Review
BibTex RIS Cite

Plant-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Biological Activities

Year 2024, Volume: 44 Issue: 4, 351 - 372, 01.12.2024
https://doi.org/10.52794/hujpharm.1472081

Abstract

Gümüş nanopartiküller (AgNP), diğer metalik nanopartiküller ile kıyaslandığında yapısal özelliklerinin uygun olması, bakteri direncinin çok düşük olması, düşük konsantrasyonlarda toksik olmaması, bakteri, virüs ve diğer ökaryotik mikroorganizmalar için yüksek antimikrobiyal işlevselliği dışında, hücredeki toksisite miktarını düşürebilmesi ile kendine özgü özelliklere sahiptir. AgNP’lerin sentezinin kolay işlenebilir, ölçülebilir ve ekonomik açıdan ulaşılabilir faydalara sahip olmaları bu partiküllere elektronik, gıda paketleme, kozmetik endüstrisi, tıbbi ve medikal çalışmalarda farklı şekillerde kullanılabilme imkânı sağlar. AgNP’lerin fiziksel ve kimyasal yöntemler kullanılarak sentezi toksik kimyasalların kullanımını içermektedir. Son yıllarda bu kimyasalların kullanımını engellemek için güncel bazı yöntemler geliştirilmiş olup, yeşil sentez bu yöntemlerden ekonomik, kolay işlenebilir, ulaşılabilir materyallerden elde edilmesi ile tercih edilebilirliği yüksek bir yöntem olarak karşımıza çıkmaktadır. Bu makalenin amacı, bitkiler aracılığıyla AgNP’lerin yeşil sentezi, karakterizasyonu ve biyolojik aktivitelerinin güncel literatür verileri ile desteklenerek incelenmesidir. Biyosentezlenmiş AgNP’lerin biyolojik aktivite tayinleri ve buna bağlı olarak farklı alanlarda kullanımları ileriye dönük çalışmalar için araştırmacıların ilgi odağı olma potansiyeline sahip olacağı düşünülmektedir.

References

  • 1. Mutaf T, Çalışkan Bilgin G, Öncel S, Elibol M. Metal nanopartiküllerin mikroalgler aracılığı ile yeşil sentezi. EgeJFAS. 2023;40(1):81-89. https://doi.org/10.12714/egejfas.40.1.12
  • 2. Marangoz Ö, Yavuz O. “Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri.” Türk Hijyen ve Deneysel Biyoloji Dergisi. 2020;77(4):509-526. https://doi.org/10.5505/TurkHijyen.37790
  • 3. Yavuz İ, Yılmaz EŞ. Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi. 2021;2(1):93-108. https://doi.org/10.5281/zenodo.4843592
  • 4. Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:1137-44. https://doi.org/10.1016/j.saa.2014.08.019
  • 5. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J Phys Chem B. 2006;110(32):15666–15675. https://doi.org/10.1021/jp0608628
  • 6. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Kvítek L, et al. Gümüş nanopartiküllerin Candida türlerine karşı antifungal aktivitesi. Biyomateryaller. 2009;30(31):6333-6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
  • 7. Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. NBM. 2008;4(3):241-251. https://doi.org/10.1016/j.nano.2008.04.006
  • 8. Rogers JV, Parkinso CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters. 2008;3:129-133. https://doi.org/10.1007/s11671-008-9128-2
  • 9. Althubiti AA, Alsudir SA, Alfahad AJ, Alshehri AA, Bakr AA, Alamer AA, Alrasheed RH, Tawfik EA. Green Synthesis of Silver Nanoparticles Using Jacobaea maritima and the Evaluation of Their Antibacterial and Anticancer Activities. Int J Mol Sci. 2023;24(22):16512. doi: 10.3390/ijms242216512
  • 10. Ersöz M, Işıtan A, Balaban M. Denizli: ISBN 978-975-6992-77-7. Basım; 2018. 274s.
  • 11. Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules. 2021;12(1):31. https://doi.org/10.3390/biom12010031
  • 12. Dhaka A, Mali SC, Sharma S, Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 2023;101108. https://doi.org/10.1016/j.rechem.2023.101108
  • 13. Çalişkan G. (2020) Mikroalglerden biyojenik nanopartiküllerin sentezlenmesi ve kullanım potansiyelinin araştırılması. https://acikbilim.yok.gov.tr/handle/20.500.12812/363636
  • 14. Zahoor M, Nazir N, Iftikhar M, Naz S, Zekker I, Burlakovs J, Ali Khan F. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water. 2021;13(16):2216. https://doi.org/10.3390/w13162216
  • 15. Bulut M, Ezgi A. Dendrimerlerin önemi ve kullanım alanları. Teknik Bilimler Dergisi. 2012;2(1):5-11.
  • 16. Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng. 2017;11(4):633-646. https://doi.org/10.1007/s11705-017-1620-8
  • 17. Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. 2019;20(4):865. https://doi.org/10.3390/ijms20040865
  • 18. El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  • 19. Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AJS, Shim YY, Reaney MJT, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel). 2020;12(4):855. https://doi.org/ 10.3390/cancers12040855
  • 20. Narayanan KB, Sakthivel N. Biosynthesis of silver nanoparticles by phytopathogen Xanthomonasoryzae pv. oryzae strain BXO8. J Microbiol Biotechnol. 2013;23:1287–1292. https://doi.org/10.4014/jmb.1304.04047
  • 21. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. https://doi.org/10.3390/ijms17091534
  • 22. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8(11):7278-7308. https://doi.org/10.3390/ma8115377
  • 23. Beykaya M, Çağlar A. Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(3):631-641. https://doi.org/10.5578/fmbd.34220
  • 24. Wei L, Luyounş J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595-601. http://dx.doi.org/10.1016/j.drudis.2014.11.014.
  • 25. Mahmoud MA, El-Sayed MA. Different plasmon sensing behavior ofsilver and gold Nanorods. J Phys Chem Lett. 2013;4:1541–154. https://doi.org/10.1021/jz4005015
  • 26. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces. 2013;108:80-84. https://doi.org/10.1016/j.colsurfb.2013.02.033
  • 27. Zhang X, Heidari Majd M. Synthesis of halloysite nanotubes decorated with green silver nanoparticles to investigate cytotoxicity, lipid peroxidation and induction of apoptosis in acute leukemia cells. Sci Rep. 2023;13(1):17182. https://doi.org/ 10.1038/s41598-023-43978-y
  • 28. Sriram MI, Kalishwaralal K, Barathmanikanth S, Gurunathani S. Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanoscience Methods. 2012;1(1):56-77. https://doi.org/10.1080/17458080.2010.547878
  • 29. Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. JGEB. 2021;19(1):126. https://doi.org/10.1186/s43141-021-00228-w
  • 30. Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020;10(5):1369-1378. https://doi.org/10.1007/s13204-020-01318-w
  • 31. Huston M, DeBella M, DiBella M, Gupta A. Green Synthesis of Nanomaterials. Nanomaterials (Basel). 2021;11(8):2130. https://doi.org/10.3390/nano11082130
  • 32. Ungureanu C, Tihan GT, Zgârian RG, Fierascu I, Baroi AM, Răileanu S, Fierăscu RC. Metallic and Metal Oxides Nanoparticles for Sensing Food Pathogens-An Overview of Recent Findings and Future Prospects. Materials (Basel). 2022;15(15):5374. https://doi.org/10.3390/ma15155374
  • 33. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996. https://doi.org/10.7150/thno.45413
  • 34. Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JEM. 2021;281:111918. https://doi.org/10.1016/j.jenvman.2020.111918
  • 35. Khan HA, Ghufran M, Shams S, Jamal A, Kha A, Abdullah Awan ZA, Khan MI. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front pharmacol. 2023;14:1194809. https://doi.org/10.3389/fphar.2023.1194809
  • 36. Alabdallah NM, Hasan MM. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci. 2021;28(10):5631-5639. https://doi.org/10.1016/j.sjbs.2021.05.081
  • 37. Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules. 2022;27(15): 4754. https://doi.org/10.3390/molecules27154754
  • 38. Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S. Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. Int J Mol Sci. 2021;22(21):11993. https://doi.org/10.3390/ijms222111993
  • 39. Alghuthaymi MA, Rajkuberan C, Santhiya T, Krejcar O, Kuča K, Periakaruppan R, Prabukumar S. Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants (Basel). 2021;10(11):2370. https://doi.org/10.3390/plants10112370
  • 40. Drummer S, Madzimbamuto T, Chowdhury M. Green Synthesis of Transition-Metal Nanoparticles and Their Oxides: A Review. Materials (Basel). 2021;14(11):2700. https://doi.org/10.3390/ma14112700
  • 41. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod. 2020;272:122880. https://doi.org/10.1016/j.jclepro.2020.122880
  • 42. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38:545-560. https://doi.org/10.1007/s10529-015-2026-7
  • 43. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • 44. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. PNAS. 1999;96(24): 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  • 45. Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):235–239. https://doi.org/10.3109/21691401.2014.937870.
  • 46. Günay K, Leblebici Z. (2021). Nasturtium officinale R. Br. bitkisinin yaprak ekstraktı kullanılarak, çinko (Zn) nanopartikülünün (NP) biyosentezi ve nanopartikülün MCF-7 meme kanseri hücreleri üzerine sitotoksik etkisi (Master›s thesis, Nevşehir Hacı Bektaş Veli Üniversitesi). http://hdl.handle.net/20.500.11787/5461.
  • 47. Alassali A, Cybulska I, Brudecki GP, Farzanah R, Thomsen MH. Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv Tech Biol Med. 2016;4(1):2379-1764. http://dx.doi.org/10.4172/2379-1764.1000163
  • 48. Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon. 2022;8(12):e12313. https://doi.org/10.1016/j.heliyon.2022.e12313
  • 49. Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for Biomedical Applications-Synthesis and Characterization-A Review. Int J Mol Sci. 2022;23(10):5778. https://doi.org/10.3390/ijms23105778
  • 50. Tiwari S, Verma SK, Bhagat P, Yadav S, Sharma R, Aseri GK, Sohal JS, et al. An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech. 2021;11(11):478. https://doi.org/10.1007/s13205-021-03014-0
  • 51. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Jatropha curcas lateksini kullanarak gümüş nanopartiküllerin yeşil sentezi. Kolloidler ve Yüzeyler A: Fizikokimyasal ve Mühendislik Yönleri. 2009;339(1-3):134–139. https://doi.org/10.1016/j.colsurfa.2009.02.00
  • 52. Kıvanç MR, Önder A, Cömert Önder F, Ilgın P. Pektin/p(HEMA-ko-AAc) Hidrojellerine Gömülü Gümüş Nanopartiküllerin Yeşil Sentez Yöntemi olarak Parthenocissus quinquefolia L. Bitki Özütü ile Üretilmesi. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi. 2023;4(7):12-19.
  • 53. Baruah D, Yadav RNS, Yadav A, Das AM. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J Photochem Photobiol B. 2019;201:111649. https://doi.org/10.1016/j.jphotobiol.2019.111649
  • 54. Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, et al. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials (Basel). 2021;11(8):2086. https://doi.org/10.3390/nano11082086
  • 55. Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969–1978. https://doi.org/10.2147/IJN.S188235
  • 56. Alsareii SA, Manaa Alamri A, AlAsmari MY, Bawahab MA, Mahnashi MH, Shaikh I A, et al. Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity. Molecules (Basel, Switzerland). 2022;27(19):6306. https://doi.org/10.3390/molecules27196306.
  • 57. Chandraker SK, Ghosh MK, Lal M, Shukla R. A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. Nano Express. 2021;2(2):022008. https://doi.org/10.1088/2632-959X/ac0355
  • 58. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022;16(4):115-144. https://doi.org/10.1049/nbt2.12078
  • 59. Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier. 2017;43–58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
  • 60. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8
  • 61. Baran MF, Keskin C, Baran A, Hatipoğlu A, Yildiztekin M, Küçükaydin S, Kurt K, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023;28(5):2310. https://doi.org/10.3390/molecules28052310
  • 62. Kemala P, Idroes R, Khairan K, Ramli M, Jalil Z, Idroes GM, Tallei TE, et al. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules. 2022;27(16):5310. https://doi.org/10.3390/molecules27165310
  • 63. Vanti GL, Kurjogi M, Basavesha KN, Teradal NL, Masaphy S, Nargund VB. Solanum torvum aracılı gümüş nanopartikülünün Xxanthomonas axonopodis pv’ye karşı sentezi ve antibakteriyel aktivitesi. punicae ve Ralstonia solanacearum. Biyoteknoloji Dergisi. 2020;309:20-28. https://doi.org/10.1016/j.jbiotec.2019.12.009
  • 64. Singh P, Mijakovic I. Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci Rep. 2022;12(1):7902. https://doi.org/10.1038/s41598-022-11811-7
  • 65. Kurian JT, Balasubramanian B, Meyyazhagan A, Pappuswamy M, Alanazi AM, Rengasamy KR, Arumugam VA, et al. One-Pot Synthesis of Silver Nanoparticles from Garcinia gummi-gutta: Characterisation, Antimicrobial, Antioxidant, Anti-Cancerous and Photocatalytic Applications. Front Biosci (Landmark Ed). 2023;28(8):169. https://doi.org/10.31083/j.fbl2808169
  • 66. Gopalakrishnan V, Radha KV, Devasena T. Andrographis panikulata kullanılarak sentezlenen gümüş nanopartikülleri eritrosit modelinde oksidatif stresi iyileştirir. Malzeme Araştırma Ekspres. 2019;6(8):0850b6. https://doi.org/10.1088/2053-1591/ab24ea
  • 67. Mata R, Nakkala JR, Sadras, SR. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C. 2015;51:216-225. https://doi.org/10.1016/j.msec.2015.02.053
  • 68. Reddy NJ, Nagoor Vali D, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C. 2013;34:115–122. https://doi.org/10.1016/j.msec.2013.08.039
  • 69. Abdel Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc. 2014;18(4):356–363. https://doi.org/doi:10.1016/j.jscs.2013.09.011
  • 70. Gul A, Shaheen A, Ahmad I, Khattak B, Ahmad M, Ullah R, Bari A. Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts. Biomolecules. 2021;11(2):206. https://doi.org/10.3390/biom11020206
  • 71. Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers (Basel). 2022;14(4):742. https://doi.org/10.3390/polym14040742
  • 72. Pangli H, Vatanpour S, Hortamani S, Jalili R, Ghahary A. Incorporation of Silver Nanoparticles in Hydrogel Matrices for Controlling Wound Infection. J Burn Care Res. 2021;42(4):785-793. https://doi.org/10.1093/jbcr/iraa205
  • 73. Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Applied biochemistry and biotechnology. 2022;194(9):4187–4219. https://doi.org/10.1007/s12010-022-03963-z
  • 74. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. International journal of molecular sciences. 2021;22(13): 7202. https://doi.org/10.3390/ijms22137202
  • 75. de Lacerda Coriolano D, de Souza JB, Bueno EV, Medeiros SMFRDS, Cavalcanti IDL, Cavalcanti IMF. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz J Microbiol. 2021;52(1):267–278. https://doi.org/10.1007/s42770-020-00406-x
  • 76. Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022;10:1023542. https://doi.org/10.3389/fchem.2022.1023542
  • 77. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials (Basel, Switzerland). 2020;10(8):1566. https://doi.org/10.3390/nano10081566
  • 78. Younis HM, Hussein HA, Khaphi FL, Saeed ZK. Green biosynthesis of silver and gold nanoparticles using Teak (Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon. 2023;9(11). https://doi.org/10.1016/j.heliyon.2023.e21698
  • 79. Ajaykumar AP, Sabira O, Binitha VS, Varma SR, Mathew A, Jayaraj KN, Janish PA. Bio-Fabricated Silver Nanoparticles from the Leaf Extract of the Poisonous Plant, Holigarna arnottiana: Assessment of Antimicrobial, Antimitotic, Anticancer, and Radical-Scavenging Properties. Pharmaceutics. 2023;15(10):2468. https://doi.org/10.3390/pharmaceutics15102468.
  • 80. Pungle R, Nile SH, Makwana N, Singh R, Singh RP, Kharat AS. Green Synthesis of Silver Nanoparticles Using the Tridax procumbens Plant Extract and Screening of Its Antimicrobial and Anticancer Activities. Oxid Med Cell Longev. 2022;2022:9671594. https://doi.org/10.1155/2022/9671594
  • 81. Widatalla HA, Yassin LF, Alrasheid AA, Rahman Ahmed SA, Widdatallah MO, Eltilib SH, Mohamed AA. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022;4(3):911-915. https://doi.org/10.1039/d1na00509j
  • 82. Gevrek C, Yiğit U, Türkkan M. Corylus colurna L.(Türk Fındığı)’nin yaprak ekstraktı kullanılarak sentezlenen gümüş nanopartiküllerin optimizasyonu ve antifungal aktivitesi. Akademik Ziraat Dergisi, 12(Özel Sayı). 2023;159-172. https://doi.org/10.29278/azd.1335259
  • 83. Öztürk BY, Öztürk D. Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma. 2020;13(3):244-251. https://doi.org/10.46309/biodicon.2020.764145
  • 84. Karakaya F. (2021). Yeşil sentez yöntemiyle Ruscus aculeatus L. bitkisi kullanılarak gümüş nanopartiküllerin sentezi ve antibiyofilm, antimikrobiyal, antikanser aktivitelerinin incelenmesi (Master›s thesis, Bartın Üniversitesi, Fen Bilimleri Enstitüsü). http://hdl.handle.net/11772/6878.
  • 85. Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. Plants (Basel, Switzerland). 2023;12(11):2103. https://doi.org/10.3390/plants12112103
  • 86. Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Samir A. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nan. 2019;14:6217–6229. https://doi.org/10.2147/IJN.S214171
  • 87. Abdelkhalek A, Yassin Y, Abdel-Megeed A, Abd-Elsalam KA, Moawad H, Behiry SI. Rhizobium leguminosarum bv. viciae-Mediated Silver Nanoparticles for Controlling Bean Yellow Mosaic Virus (BYMV) Infection in Faba Bean Plants. Plants (Basel). 2022;12(1):45. https://doi.org/10.3390/plants12010045

Plant-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Biological Activities

Year 2024, Volume: 44 Issue: 4, 351 - 372, 01.12.2024
https://doi.org/10.52794/hujpharm.1472081

Abstract

Compared to other metallic nanoparticles, silver nanoparticles (AgNP) have unique features such as their suitable structural properties, very low bacterial resistance, non-toxicity at low concentrations, high antimicrobial functionality for bacteria, viruses and other eukaryotic microorganisms, as well as the ability to reduce the amount of toxicity in the cell. The fact that the synthesis of AgNPs is easy to process, measurable and has economically attainable benefits provides the opportunity for these particles to be used in different ways in electronics, food packaging, cosmetics industry, medical and medical studies. Synthesis of AgNPs using physical and chemical methods involves the use of toxic chemicals. In recent years, some current methods have been developed to prevent the use of these chemicals, and green synthesis appears to be a highly preferable method as it is obtained from economical, easily processable and accessible materials. The aim of this article is to examine the green synthesis, characterization and biological activities of AgNPs through plants, supported by current literature data. It is thought that the biological activity determinations of biosynthesized AgNPs and their use in different fields will have the potential to be the focus of attention of researchers for prospective studies.

References

  • 1. Mutaf T, Çalışkan Bilgin G, Öncel S, Elibol M. Metal nanopartiküllerin mikroalgler aracılığı ile yeşil sentezi. EgeJFAS. 2023;40(1):81-89. https://doi.org/10.12714/egejfas.40.1.12
  • 2. Marangoz Ö, Yavuz O. “Nano-ilaç taşıma sistemleri ve toksikolojik değerlendirmeleri.” Türk Hijyen ve Deneysel Biyoloji Dergisi. 2020;77(4):509-526. https://doi.org/10.5505/TurkHijyen.37790
  • 3. Yavuz İ, Yılmaz EŞ. Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi. 2021;2(1):93-108. https://doi.org/10.5281/zenodo.4843592
  • 4. Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:1137-44. https://doi.org/10.1016/j.saa.2014.08.019
  • 5. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J Phys Chem B. 2006;110(32):15666–15675. https://doi.org/10.1021/jp0608628
  • 6. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Kvítek L, et al. Gümüş nanopartiküllerin Candida türlerine karşı antifungal aktivitesi. Biyomateryaller. 2009;30(31):6333-6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
  • 7. Nadworny PL, Wang J, Tredget EE, Burrell RE. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. NBM. 2008;4(3):241-251. https://doi.org/10.1016/j.nano.2008.04.006
  • 8. Rogers JV, Parkinso CV, Choi YW, Speshock JL, Hussain SM. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters. 2008;3:129-133. https://doi.org/10.1007/s11671-008-9128-2
  • 9. Althubiti AA, Alsudir SA, Alfahad AJ, Alshehri AA, Bakr AA, Alamer AA, Alrasheed RH, Tawfik EA. Green Synthesis of Silver Nanoparticles Using Jacobaea maritima and the Evaluation of Their Antibacterial and Anticancer Activities. Int J Mol Sci. 2023;24(22):16512. doi: 10.3390/ijms242216512
  • 10. Ersöz M, Işıtan A, Balaban M. Denizli: ISBN 978-975-6992-77-7. Basım; 2018. 274s.
  • 11. Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules. 2021;12(1):31. https://doi.org/10.3390/biom12010031
  • 12. Dhaka A, Mali SC, Sharma S, Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 2023;101108. https://doi.org/10.1016/j.rechem.2023.101108
  • 13. Çalişkan G. (2020) Mikroalglerden biyojenik nanopartiküllerin sentezlenmesi ve kullanım potansiyelinin araştırılması. https://acikbilim.yok.gov.tr/handle/20.500.12812/363636
  • 14. Zahoor M, Nazir N, Iftikhar M, Naz S, Zekker I, Burlakovs J, Ali Khan F. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water. 2021;13(16):2216. https://doi.org/10.3390/w13162216
  • 15. Bulut M, Ezgi A. Dendrimerlerin önemi ve kullanım alanları. Teknik Bilimler Dergisi. 2012;2(1):5-11.
  • 16. Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng. 2017;11(4):633-646. https://doi.org/10.1007/s11705-017-1620-8
  • 17. Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. 2019;20(4):865. https://doi.org/10.3390/ijms20040865
  • 18. El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  • 19. Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AJS, Shim YY, Reaney MJT, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel). 2020;12(4):855. https://doi.org/ 10.3390/cancers12040855
  • 20. Narayanan KB, Sakthivel N. Biosynthesis of silver nanoparticles by phytopathogen Xanthomonasoryzae pv. oryzae strain BXO8. J Microbiol Biotechnol. 2013;23:1287–1292. https://doi.org/10.4014/jmb.1304.04047
  • 21. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. https://doi.org/10.3390/ijms17091534
  • 22. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8(11):7278-7308. https://doi.org/10.3390/ma8115377
  • 23. Beykaya M, Çağlar A. Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2016;16(3):631-641. https://doi.org/10.5578/fmbd.34220
  • 24. Wei L, Luyounş J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595-601. http://dx.doi.org/10.1016/j.drudis.2014.11.014.
  • 25. Mahmoud MA, El-Sayed MA. Different plasmon sensing behavior ofsilver and gold Nanorods. J Phys Chem Lett. 2013;4:1541–154. https://doi.org/10.1021/jz4005015
  • 26. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces. 2013;108:80-84. https://doi.org/10.1016/j.colsurfb.2013.02.033
  • 27. Zhang X, Heidari Majd M. Synthesis of halloysite nanotubes decorated with green silver nanoparticles to investigate cytotoxicity, lipid peroxidation and induction of apoptosis in acute leukemia cells. Sci Rep. 2023;13(1):17182. https://doi.org/ 10.1038/s41598-023-43978-y
  • 28. Sriram MI, Kalishwaralal K, Barathmanikanth S, Gurunathani S. Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanoscience Methods. 2012;1(1):56-77. https://doi.org/10.1080/17458080.2010.547878
  • 29. Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. JGEB. 2021;19(1):126. https://doi.org/10.1186/s43141-021-00228-w
  • 30. Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020;10(5):1369-1378. https://doi.org/10.1007/s13204-020-01318-w
  • 31. Huston M, DeBella M, DiBella M, Gupta A. Green Synthesis of Nanomaterials. Nanomaterials (Basel). 2021;11(8):2130. https://doi.org/10.3390/nano11082130
  • 32. Ungureanu C, Tihan GT, Zgârian RG, Fierascu I, Baroi AM, Răileanu S, Fierăscu RC. Metallic and Metal Oxides Nanoparticles for Sensing Food Pathogens-An Overview of Recent Findings and Future Prospects. Materials (Basel). 2022;15(15):5374. https://doi.org/10.3390/ma15155374
  • 33. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996. https://doi.org/10.7150/thno.45413
  • 34. Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JEM. 2021;281:111918. https://doi.org/10.1016/j.jenvman.2020.111918
  • 35. Khan HA, Ghufran M, Shams S, Jamal A, Kha A, Abdullah Awan ZA, Khan MI. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front pharmacol. 2023;14:1194809. https://doi.org/10.3389/fphar.2023.1194809
  • 36. Alabdallah NM, Hasan MM. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci. 2021;28(10):5631-5639. https://doi.org/10.1016/j.sjbs.2021.05.081
  • 37. Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules. 2022;27(15): 4754. https://doi.org/10.3390/molecules27154754
  • 38. Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S. Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. Int J Mol Sci. 2021;22(21):11993. https://doi.org/10.3390/ijms222111993
  • 39. Alghuthaymi MA, Rajkuberan C, Santhiya T, Krejcar O, Kuča K, Periakaruppan R, Prabukumar S. Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants (Basel). 2021;10(11):2370. https://doi.org/10.3390/plants10112370
  • 40. Drummer S, Madzimbamuto T, Chowdhury M. Green Synthesis of Transition-Metal Nanoparticles and Their Oxides: A Review. Materials (Basel). 2021;14(11):2700. https://doi.org/10.3390/ma14112700
  • 41. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod. 2020;272:122880. https://doi.org/10.1016/j.jclepro.2020.122880
  • 42. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38:545-560. https://doi.org/10.1007/s10529-015-2026-7
  • 43. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588-599. https://doi.org/10.1016/j.tibtech.2016.02.006
  • 44. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. PNAS. 1999;96(24): 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  • 45. Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):235–239. https://doi.org/10.3109/21691401.2014.937870.
  • 46. Günay K, Leblebici Z. (2021). Nasturtium officinale R. Br. bitkisinin yaprak ekstraktı kullanılarak, çinko (Zn) nanopartikülünün (NP) biyosentezi ve nanopartikülün MCF-7 meme kanseri hücreleri üzerine sitotoksik etkisi (Master›s thesis, Nevşehir Hacı Bektaş Veli Üniversitesi). http://hdl.handle.net/20.500.11787/5461.
  • 47. Alassali A, Cybulska I, Brudecki GP, Farzanah R, Thomsen MH. Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv Tech Biol Med. 2016;4(1):2379-1764. http://dx.doi.org/10.4172/2379-1764.1000163
  • 48. Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant extracted silver nanoparticles and advances in dental implant applications. Heliyon. 2022;8(12):e12313. https://doi.org/10.1016/j.heliyon.2022.e12313
  • 49. Nicolae-Maranciuc A, Chicea D, Chicea LM. Ag Nanoparticles for Biomedical Applications-Synthesis and Characterization-A Review. Int J Mol Sci. 2022;23(10):5778. https://doi.org/10.3390/ijms23105778
  • 50. Tiwari S, Verma SK, Bhagat P, Yadav S, Sharma R, Aseri GK, Sohal JS, et al. An overview of the phytosynthesis of various metal nanoparticles. 3 Biotech. 2021;11(11):478. https://doi.org/10.1007/s13205-021-03014-0
  • 51. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Jatropha curcas lateksini kullanarak gümüş nanopartiküllerin yeşil sentezi. Kolloidler ve Yüzeyler A: Fizikokimyasal ve Mühendislik Yönleri. 2009;339(1-3):134–139. https://doi.org/10.1016/j.colsurfa.2009.02.00
  • 52. Kıvanç MR, Önder A, Cömert Önder F, Ilgın P. Pektin/p(HEMA-ko-AAc) Hidrojellerine Gömülü Gümüş Nanopartiküllerin Yeşil Sentez Yöntemi olarak Parthenocissus quinquefolia L. Bitki Özütü ile Üretilmesi. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi. 2023;4(7):12-19.
  • 53. Baruah D, Yadav RNS, Yadav A, Das AM. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J Photochem Photobiol B. 2019;201:111649. https://doi.org/10.1016/j.jphotobiol.2019.111649
  • 54. Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, et al. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials (Basel). 2021;11(8):2086. https://doi.org/10.3390/nano11082086
  • 55. Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969–1978. https://doi.org/10.2147/IJN.S188235
  • 56. Alsareii SA, Manaa Alamri A, AlAsmari MY, Bawahab MA, Mahnashi MH, Shaikh I A, et al. Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity. Molecules (Basel, Switzerland). 2022;27(19):6306. https://doi.org/10.3390/molecules27196306.
  • 57. Chandraker SK, Ghosh MK, Lal M, Shukla R. A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. Nano Express. 2021;2(2):022008. https://doi.org/10.1088/2632-959X/ac0355
  • 58. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022;16(4):115-144. https://doi.org/10.1049/nbt2.12078
  • 59. Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier. 2017;43–58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
  • 60. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8
  • 61. Baran MF, Keskin C, Baran A, Hatipoğlu A, Yildiztekin M, Küçükaydin S, Kurt K, et al. Green Synthesis of Silver Nanoparticles from Allium cepa L. Peel Extract, Their Antioxidant, Antipathogenic, and Anticholinesterase Activity. Molecules. 2023;28(5):2310. https://doi.org/10.3390/molecules28052310
  • 62. Kemala P, Idroes R, Khairan K, Ramli M, Jalil Z, Idroes GM, Tallei TE, et al. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules. 2022;27(16):5310. https://doi.org/10.3390/molecules27165310
  • 63. Vanti GL, Kurjogi M, Basavesha KN, Teradal NL, Masaphy S, Nargund VB. Solanum torvum aracılı gümüş nanopartikülünün Xxanthomonas axonopodis pv’ye karşı sentezi ve antibakteriyel aktivitesi. punicae ve Ralstonia solanacearum. Biyoteknoloji Dergisi. 2020;309:20-28. https://doi.org/10.1016/j.jbiotec.2019.12.009
  • 64. Singh P, Mijakovic I. Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci Rep. 2022;12(1):7902. https://doi.org/10.1038/s41598-022-11811-7
  • 65. Kurian JT, Balasubramanian B, Meyyazhagan A, Pappuswamy M, Alanazi AM, Rengasamy KR, Arumugam VA, et al. One-Pot Synthesis of Silver Nanoparticles from Garcinia gummi-gutta: Characterisation, Antimicrobial, Antioxidant, Anti-Cancerous and Photocatalytic Applications. Front Biosci (Landmark Ed). 2023;28(8):169. https://doi.org/10.31083/j.fbl2808169
  • 66. Gopalakrishnan V, Radha KV, Devasena T. Andrographis panikulata kullanılarak sentezlenen gümüş nanopartikülleri eritrosit modelinde oksidatif stresi iyileştirir. Malzeme Araştırma Ekspres. 2019;6(8):0850b6. https://doi.org/10.1088/2053-1591/ab24ea
  • 67. Mata R, Nakkala JR, Sadras, SR. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C. 2015;51:216-225. https://doi.org/10.1016/j.msec.2015.02.053
  • 68. Reddy NJ, Nagoor Vali D, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C. 2013;34:115–122. https://doi.org/10.1016/j.msec.2013.08.039
  • 69. Abdel Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc. 2014;18(4):356–363. https://doi.org/doi:10.1016/j.jscs.2013.09.011
  • 70. Gul A, Shaheen A, Ahmad I, Khattak B, Ahmad M, Ullah R, Bari A. Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts. Biomolecules. 2021;11(2):206. https://doi.org/10.3390/biom11020206
  • 71. Huq MA, Ashrafudoulla M, Rahman MM, Balusamy SR, Akter S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers (Basel). 2022;14(4):742. https://doi.org/10.3390/polym14040742
  • 72. Pangli H, Vatanpour S, Hortamani S, Jalili R, Ghahary A. Incorporation of Silver Nanoparticles in Hydrogel Matrices for Controlling Wound Infection. J Burn Care Res. 2021;42(4):785-793. https://doi.org/10.1093/jbcr/iraa205
  • 73. Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Applied biochemistry and biotechnology. 2022;194(9):4187–4219. https://doi.org/10.1007/s12010-022-03963-z
  • 74. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. International journal of molecular sciences. 2021;22(13): 7202. https://doi.org/10.3390/ijms22137202
  • 75. de Lacerda Coriolano D, de Souza JB, Bueno EV, Medeiros SMFRDS, Cavalcanti IDL, Cavalcanti IMF. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz J Microbiol. 2021;52(1):267–278. https://doi.org/10.1007/s42770-020-00406-x
  • 76. Mussin J, Giusiano G. Biogenic silver nanoparticles as antifungal agents. Front Chem. 2022;10:1023542. https://doi.org/10.3389/fchem.2022.1023542
  • 77. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials (Basel, Switzerland). 2020;10(8):1566. https://doi.org/10.3390/nano10081566
  • 78. Younis HM, Hussein HA, Khaphi FL, Saeed ZK. Green biosynthesis of silver and gold nanoparticles using Teak (Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon. 2023;9(11). https://doi.org/10.1016/j.heliyon.2023.e21698
  • 79. Ajaykumar AP, Sabira O, Binitha VS, Varma SR, Mathew A, Jayaraj KN, Janish PA. Bio-Fabricated Silver Nanoparticles from the Leaf Extract of the Poisonous Plant, Holigarna arnottiana: Assessment of Antimicrobial, Antimitotic, Anticancer, and Radical-Scavenging Properties. Pharmaceutics. 2023;15(10):2468. https://doi.org/10.3390/pharmaceutics15102468.
  • 80. Pungle R, Nile SH, Makwana N, Singh R, Singh RP, Kharat AS. Green Synthesis of Silver Nanoparticles Using the Tridax procumbens Plant Extract and Screening of Its Antimicrobial and Anticancer Activities. Oxid Med Cell Longev. 2022;2022:9671594. https://doi.org/10.1155/2022/9671594
  • 81. Widatalla HA, Yassin LF, Alrasheid AA, Rahman Ahmed SA, Widdatallah MO, Eltilib SH, Mohamed AA. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022;4(3):911-915. https://doi.org/10.1039/d1na00509j
  • 82. Gevrek C, Yiğit U, Türkkan M. Corylus colurna L.(Türk Fındığı)’nin yaprak ekstraktı kullanılarak sentezlenen gümüş nanopartiküllerin optimizasyonu ve antifungal aktivitesi. Akademik Ziraat Dergisi, 12(Özel Sayı). 2023;159-172. https://doi.org/10.29278/azd.1335259
  • 83. Öztürk BY, Öztürk D. Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biyolojik Çeşitlilik ve Koruma. 2020;13(3):244-251. https://doi.org/10.46309/biodicon.2020.764145
  • 84. Karakaya F. (2021). Yeşil sentez yöntemiyle Ruscus aculeatus L. bitkisi kullanılarak gümüş nanopartiküllerin sentezi ve antibiyofilm, antimikrobiyal, antikanser aktivitelerinin incelenmesi (Master›s thesis, Bartın Üniversitesi, Fen Bilimleri Enstitüsü). http://hdl.handle.net/11772/6878.
  • 85. Al-Askar AA, Aseel DG, El-Gendi H, Sobhy S, Samy MA, Hamdy E, El-Messeiry S. Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica granatum L.) Peel Extract against Tobacco Mosaic Virus. Plants (Basel, Switzerland). 2023;12(11):2103. https://doi.org/10.3390/plants12112103
  • 86. Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Samir A. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nan. 2019;14:6217–6229. https://doi.org/10.2147/IJN.S214171
  • 87. Abdelkhalek A, Yassin Y, Abdel-Megeed A, Abd-Elsalam KA, Moawad H, Behiry SI. Rhizobium leguminosarum bv. viciae-Mediated Silver Nanoparticles for Controlling Bean Yellow Mosaic Virus (BYMV) Infection in Faba Bean Plants. Plants (Basel). 2022;12(1):45. https://doi.org/10.3390/plants12010045
There are 87 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Delivery Technologies
Journal Section Review Articles
Authors

Merve Düzgün 0009-0008-1280-4985

Aslı Kara 0000-0002-0347-0222

Publication Date December 1, 2024
Submission Date April 22, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024 Volume: 44 Issue: 4

Cite

Vancouver Düzgün M, Kara A. Plant-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Biological Activities. HUJPHARM. 2024;44(4):351-72.