Antiviral Potential of Cistus L. against Infectious Bronchitis Virus and SARS-CoV-2
Year 2025,
Volume: 45 Issue: 1, 1 - 17, 01.03.2025
Feyruz Bozoglan
,
Ali Ergüç
,
Furkan Ozan Çöven
,
Gizem Gungor Erkanli
,
Engin Alp Onen
,
Ahmet C Goren
,
Ayşe Nalbantsoy
Abstract
Cistus L. (Cistus) is distributed in Türkiye by 5 species including Cistus creticus L. (C. creticus), Cistus monspeliensis L. (C. monspeliensis), Cistus laurifolius L. (C. laurifolius), Cistus parviflorus L. (C. parviflorus) and Cistus salviifolius L. (C. salviifolius). In this study, antiviral activity of 5 Cistus extracts were investigated against Infectious bronchitis virus (IBV) using the in ovo antiviral activity assay, which measures both embryo viability and agglutination of chicken red blood cells. In further experiments, antiviral potential of C. creticus extract was also examined against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Vero-E6 cells. In ovo antiviral activity assays displayed that C. parviflorus and C. monspeliensis extracts caused more antiviral activity against IBV-D274 strain than other extracts. Further asssays showed that C. creticus extract led to dose and time dependent antiviral activity against SARS-CoV-2. The results proposed that C. parviflorus and C. monspeliensis extracts might have a potential for the treatment of virus-mediated diseases. Increasing incubation time and concentration of C. creticus extract led to increase of antiviral activity against SARS-CoV-2, which means that C. creticus extract had potent antiviral activity.
Ethical Statement
On behalf of all authors, I hereby state that the work described here has not been published previously, that it is not under consideration for publication elsewhere, that its publication is approved by all Authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or any other language, without the written consent of the Publisher. And this manuscript has not been checked by a language editing service before submission. I hope that it will be acceptable to be published in Hacettepe University Journal of the Faculty of Pharmacy.
Supporting Institution
None
Thanks
We gratefully thank Assoc. Prof. Dr. Hasan YILDIRIM who shared the coordinates for the correct collection of Cistus species and Dr. Erdinc OGUR from the Aegean Agricultural Research Institute, who assisted collect the right species.
References
- 1. Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2003;2(10):812-822. https://doi.org/10.1038/nrd1201
- 2. De Benedetto I, Trunfio M, Guastamacchia G, Bonora S, Calcagno A. A review of the potential mechanisms of neuronaltoxicity associated with antiretroviral drugs. J Neurovirol. 2020;26(5):642-651. https://doi.org/10.1007/s13365-020-00874-9
- 3. Fan Q, Zhang B, Ma J, Zhang S. Safety profile of the antiviral drug remdesivir: An update. Biomed Pharmacother 2020;130:110532. https://doi.org/10.1016/j.biopha.2020.110532
- 4. Güçlü İ, Yüksel V. Fitoterapide antiviral bitkiler. World J. Exp. Med. 2017;7(13):25-34
- 5. WHO, traditional medicine strategy: 2014-2023, 2013. [cited July 2024]. Available from: https://www.who.int/publications/i/item/9789241506096
- 6. Veiga M, Costa EM, Silva S, Pintado M. Impact of plant extracts upon human health: A review. Crit Rev Food Sci Nutr 2020;60(5):873-886. https://doi.org/10.1080/10408398.2018.1540969
- 7. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131(2):111-120. https://doi.org/10.1016/j.virusres.2007.09.008
- 8. Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2020;34(4):742-768. https://doi.org/10.1002/ptr.6575
- 9. Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014;4(1):24-35. https://doi.org/10.4103/2225-4110.124335
- 10. Akram M, Tahir IM, Shah SMA., Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018;32(5):811–822. https://doi.org/10.1002/ptr.6024
- 11. Guzmán B, Vargas P. Long‐distance colonization of the Western Mediterranean by Cistus ladanifer (Cistaceae) despite the absence of special dispersal mechanisms. J. Biogeogr. 2009;36(5):954-968. https://doi.org/10.1111/j.1365-2699.2008.02040.x
- 12. Güvenç A, Yıldız S, Özkan AM, Erdurak CS, Coşkun M, Yılmaz G, Okuyama T, Okada Y. Antimicrobiological studies on Turkish Cistus species. Pharm Biol 2005;43(2):78-183. https://doi.org/10.1080/13880200590919537
- 13. Tuzlacı E, Erol MK. Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia. 1999;70(6):593-610. https://doi.org/10.1016/S0367-326X(99)00074-X
- 14. Gürdal B, Kültür S. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J. Ethnopharmacol. 2013;146(1):113–126. https://doi.org/10.1016/j.jep.2012.12.012
- 15. Sayah K, Marmouzi I, Naceiri Mrabti H, Cherrah Y, Faouzi ME. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed Res. Int. 2017;2789482. https://doi.org/10.1155/2017/2789482
- 16. Şekeroğlu N, Gezici S. Coronavirus pandemic and some Turkish medicinal plants. Anatolian Clinic. 2020;25(Suppl 1):163-182. https://doi.org/10.21673/anadoluklin.724210
- 17. Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front. Chem.2014;2:35. https://doi.org/10.3389/fchem.2014.00035
- 18. Fang X, Wang R, Sun S, Liu X, Liu X, Wang W, Okada Y. Chemical constituents from the leaves of Cistus parviflorus. J. Chin. Pharm. Sci. 2018;27(1):40-50. https://doi.org/10.5246/jcps.2018.01.005
- 19. Rauwald HW, Liebold T, Grötzinger K, Lehmann J, Kuchta K. Labdanum and Labdanes of C. creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling. Phytomedicine 2019;60:152977. https://doi.org/10.1016/j.phymed.2019.152977
- 20. Marandino A, Vagnozzi A, Tomás G, Techera C, Gerez R, Hernández M, Williman J, Realpe M, Greif G, Panzera Y, Pérez R. Origin of New Lineages by Recombination and Mutation in Avian Infectious Bronchitis Virus from South America. Viruses. 2022;14(10):2095. https://doi.org/10.3390/v14102095
- 21. Brandão PE, Hora AS, Silva SOS, Berg M, Taniwaki SA. Complete Genome Sequence of Avian Coronavirus Strain D274. Microbiol. Resour. Announc. 2018;7(8):e01003-18. https://doi.org/10.1128/MRA.01003-18
- 22. Mohajer Shojai T, Ghalyanchi Langeroudi A, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458-267.
- 23. Çevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ (Clinical research ed.). 2020;371:m3862. https://doi.org/10.1136/bmj.m3862
- 24. Demiroz T, Nalbantsoy A, Kose FA, Baykan S. Phytochemical composition and antioxidant, cytotoxic and anti-inflammatory properties of Psephellus goeksunensis (Aytaç & H. Duman) Greuter & Raab-Straube. S Afr J Bot 2020;130:1-7. https://doi.org/10.1016/j.sajb.2019.11.021
- 25. Özer Z, Çarıkçı S, Yılmaz H, Kılıç T, Dirmenci T, Gören AC. Determination of secondary metabolites of Origanum vulgaresubsp. hirtum and O. vulgare subsp. vulgare by LC-MS/MS. J. Chem. Metrol. 2020;14(1):25-34. http://doi.org/10.25135/jcm.33.20.04.1610
- 26. Kınoğlu BK, Dirmenci T, Alwasel SH, Gulcin İ, Goren AC. Quantification of main secondary metabolites of Satureja icarica PH Davis (Lamiaceae) by LC-HRMS and evaluation of antioxidant capacities. J. Chem. Metrol. 2023;17(2):199-214. http://doi.org/10.25135/jcm.2311.2956
- 27. Kızıltaş H, Bingol Z, Goren A, Alwasel S, Gülçin İ. Analysis of phenolic compounds by LC-HRMS and determination of antioxidant and enzyme Inhibitory properties of Verbascum speciousum Schrad. J. Nat. Prod. 2023;17(3):485-500. http://doi.org/10.25135/rnp.370.2210.2598
- 28. Magnusson B. and Örnemark U (eds.). 2014. Eurachem Guide: The fitness for purpose of analytical methods- a laboratory guide to method validation and related topics, (2nd ed.). Available from: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf
- 29. Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra, Dixit R, Singh VK, Desai DN, Kulkarni DD, Dimri U, Singh VP. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement Altern Med 2018;18(1):174. https://doi.org/10.1186/s12906-018-2238-1
- 30. Sarıkahya NB, Varol E, Okkali SG, Yucel B, Margaoan R, Nalbantsoy A. Comparative Study of Antiviral, Cytotoxic, Antioxidant Activities, Total Phenolic Profile and Chemical Content of Propolis Samples in Different Colors from Turkiye. Antioxidants (Basel). 2022;11(10):2075. https://doi.org/10.3390/antiox11102075
- 31. WOAH. 2023. “Avian influenza (infection with avian influenza viruses)”, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 12th. [cited July 2024]. Available from: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access (30 July 2024)
- 32. Detlef Schierstedt SA. 2010. [cited July 2024]. Cistus Extracts. United States Patent Application No: US20100062068A1. Available from: https://patents.google.com/patent/US20100062068A1/en
- 33. Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr. Protoc. Microbiol. 2008;Appendix 4-4E. https://doi.org/10.1002/9780471729259.mca04es11
- 34. Onen AE, Sonmez K, Yildirim F, Demirci EK, Gurel A. Development, analysis, and preclinical evaluation of inactivated vaccine candidate for prevention of Covid-19 disease. All Life. 2022;15(1):771-793. https://doi.org/10.1080/26895293.2022.2099468
- 35. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- 36. Tay FP, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virol. 2012;433(2):421-430. https://doi.org/10.1016/j.virol.2012.08.037
- 37. Lei C, Yang J, Hu J, Sun X. On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virol. Sin. 2021;36(1):141-144. https://doi.org/10.1007/s12250-020-00230-5
- 38. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85-86. https://doi.org/10.5501/wjv.v5.i2.85
- 39. Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front. Vet. Sci. 2022;9:933274. https://doi.org/10.3389/fvets.2022.933274
- 40. Zalegh I, Akssira M, Bourhi M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Alyahya HK, Mhand RA. A review on Cistus sp.: phytochemical and antimicrobial activities. Plants. 2021;10(6):1214. https://doi.org/10.3390/plants10061214
- 41. Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Frontier in Medicine. 2020;7(444). https://doi.org/10.3389/fmed.2020.00444
- 42. Droebner K, Ehrhardt C, Poetter A, Ludwig S, Planz O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir Res. 2007;76(1):1-10. https://doi.org/10.1016/j.antiviral.2007.04.001
- 43. Ehrhardt C, Hrincius ER, Korte V, Mazur I, Droebner K, Poetter A, Dreschers S, Schmolke M, Planz O, Ludwig S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiv Res. 2007;76(1):38–47. https://doi.org/10.1016/j.antiviral.2007.05.002
- 44. Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, Gürtler L, Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016;6:20394. https://doi.org/10.1038/srep20394
- 45. Kuchta K, Tung NH, Ohta T, Uto T, Raekiansyah M, Grötzinger K, Rausch H, Shoyama Y, Rauwald HW, Morita K. The old pharmaceutical oleoresin labdanum of Cistus creticus L. exerts pronounced in vitro anti-dengue virus activity. J. Ethnopharmacol. 2020;257:112316. https://doi.org/10.1016/j.jep.2019.112316
- 46. Barrajón-Catalán E, Fernández-Arroyo S, Roldán C, Guillén E, Saura D, Segura-Carretero A, Micol V. A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochem Anal:PCA. 2011;22(4):303-312. https://doi.org/10.1002/pca.1281
- 47. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 2020;148:80-89. https://doi.org/10.1016/j.plaphy.2020.01.006
- 48. Carev I, Maravić A, Ilić N, Čikeš Čulić V, Politeo O, Zorić Z, Radan M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life (Basel). 2020;10(7):112. https://doi.org/10.3390/life10070112
- 49. Politeo O, Maravić A, Burčul F, Carev I, Kamenjarin J. Phytochemical composition and antimicrobial activity of essential oils of wild growing Cistus species in Croatia. Nat. Prod. Commun. 2018;13(6):771-774. https://doi.org/10.1177/1934578X1801300631
- 50. Sahraoui R, Djellali S, Chaker AN. Morphological, anatomical, secondary metabolites investigation and physicochemical analysis of Cistus creticus. Phcog Commn. 2013;3(4):58.
- 51. Gürbüz P, Kosar M, Güvenalp Z, Uz A. Demirezer, L. Simultaneous determination of selected flavonoids from different Cistus species by HPLC-PDA. J. Pharm. Res. 2018;22(3). https://doi.org/10.12991/jrp.2018.80
- 52. Das RK, Brar SK, Verma M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol. Rep. 2016;68(2):404-414. https://doi.org/10.1016/j.pharep.2015.10.007
- 53. Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the supplies: metabolism as a novel facet of virus-host interaction. Front. immunol. 2019;10:1533. https://doi.org/10.3389/fimmu.2019.01533
- 54. Critchfield JW, Butera ST, Folks TM. Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovir 1996;12(1):39-46. https://doi.org/10.1089/aid.1996.12.39
- 55. Wu Q, Yu C, Yan Y, Chen J, Zhang C, Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81(5):429-433. https://doi.org/10.1016/j.fitote.2009.12.005
- 56. Ferreira PG, Ferraz AC, Figueiredo JE, Lima CF, Rodrigues, VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira-Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães, JC. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arch. Virol. 2018;163(6):1567-1576. https://doi.org/10.1007/s00705-018-3774-1
- 57. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir Res. 1993;21(4):289-299. https://doi.org/10.1016/0166-3542(93)90008-7
- 58. Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antivir Res. 2005;68(2):66-74. https://doi.org/10.1016/j.antiviral.2005.06.010
- 59. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 2016;9(1):1-7. https://doi.org/10.1016/j.apjtm.2015.12.002
- 60. Schwerdtfeger SM, Melzig MF. Wirkung von Pflanzenextrakten auf die Neuraminidase-Aktivität. Z. fur Phytother. 2008;29(02):65-70. https://doi.org/10.1055/s-2008-1077269
- 61. Wagner H. Multitarget therapy--the future of treatment for more than just functional dyspepsia. Phytomedicine : Int. J. Phytopharm 2006;13(5):122–129. https://doi.org/10.1016/j.phymed.2006.03.021
Cistus L.'nin Enfeksiyöz Bronşitis Virüsü ve SARS-CoV-2'ye Karşı Antiviral Potansiyeli
Year 2025,
Volume: 45 Issue: 1, 1 - 17, 01.03.2025
Feyruz Bozoglan
,
Ali Ergüç
,
Furkan Ozan Çöven
,
Gizem Gungor Erkanli
,
Engin Alp Onen
,
Ahmet C Goren
,
Ayşe Nalbantsoy
Abstract
Cistus L. (Cistus), Türkiye'de Cistus creticus L. (C. creticus), Cistus monspeliensis L. (C. monspeliensis), Cistus laurifolius L. (C. laurifolius), Cistus parviflorus L. (C) olmak üzere 5 tür tarafından yayılış göstermektedir. . parviflorus) ve Cistus salviifolius L. (C. salviifolius). Bu çalışmada, 5 Cistus ekstraktının antiviral aktivitesi, hem embriyo canlılığını hem de tavuk kırmızı kan hücrelerinin aglütinasyonunu ölçen in ovo antiviral aktivite tahlili kullanılarak Enfeksiyöz bronşitis virüsüne (IBV) karşı araştırıldı. Daha sonraki deneylerde, C. creticus ekstraktının antiviral potansiyeli, şiddetli akut solunum sendromu koronavirüs 2 (SARS-CoV-2) ile enfekte Vero-E6 hücrelerine karşı da incelenmiştir. İn ovo antiviral aktivite analizleri, C. parviflorus ve C. monspeliensis ekstraktlarının IBV-D274 suşuna karşı diğer ekstraktlara göre daha fazla antiviral aktiviteye neden olduğunu göstermiştir. Daha ileri analizler, C. creticus ekstraktının SARS-CoV-2'ye karşı doza ve zamana bağlı antiviral aktiviteye yol açtığını gösterdi. Sonuçlar, C. parviflorus ve C. monspeliensis ekstraktlarının virüs kaynaklı hastalıkların tedavisinde potansiyele sahip olabileceğini öne sürdü. Artan inkübasyon süresi ve C. creticus ekstraktının konsantrasyonu SARS-CoV-2'ye karşı antiviral aktivitenin artmasına yol açtı, bu da C. creticus ekstraktının güçlü antiviral aktiviteye sahip olduğu anlamına geliyor.
References
- 1. Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2003;2(10):812-822. https://doi.org/10.1038/nrd1201
- 2. De Benedetto I, Trunfio M, Guastamacchia G, Bonora S, Calcagno A. A review of the potential mechanisms of neuronaltoxicity associated with antiretroviral drugs. J Neurovirol. 2020;26(5):642-651. https://doi.org/10.1007/s13365-020-00874-9
- 3. Fan Q, Zhang B, Ma J, Zhang S. Safety profile of the antiviral drug remdesivir: An update. Biomed Pharmacother 2020;130:110532. https://doi.org/10.1016/j.biopha.2020.110532
- 4. Güçlü İ, Yüksel V. Fitoterapide antiviral bitkiler. World J. Exp. Med. 2017;7(13):25-34
- 5. WHO, traditional medicine strategy: 2014-2023, 2013. [cited July 2024]. Available from: https://www.who.int/publications/i/item/9789241506096
- 6. Veiga M, Costa EM, Silva S, Pintado M. Impact of plant extracts upon human health: A review. Crit Rev Food Sci Nutr 2020;60(5):873-886. https://doi.org/10.1080/10408398.2018.1540969
- 7. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res. 2008;131(2):111-120. https://doi.org/10.1016/j.virusres.2007.09.008
- 8. Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2020;34(4):742-768. https://doi.org/10.1002/ptr.6575
- 9. Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014;4(1):24-35. https://doi.org/10.4103/2225-4110.124335
- 10. Akram M, Tahir IM, Shah SMA., Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018;32(5):811–822. https://doi.org/10.1002/ptr.6024
- 11. Guzmán B, Vargas P. Long‐distance colonization of the Western Mediterranean by Cistus ladanifer (Cistaceae) despite the absence of special dispersal mechanisms. J. Biogeogr. 2009;36(5):954-968. https://doi.org/10.1111/j.1365-2699.2008.02040.x
- 12. Güvenç A, Yıldız S, Özkan AM, Erdurak CS, Coşkun M, Yılmaz G, Okuyama T, Okada Y. Antimicrobiological studies on Turkish Cistus species. Pharm Biol 2005;43(2):78-183. https://doi.org/10.1080/13880200590919537
- 13. Tuzlacı E, Erol MK. Turkish folk medicinal plants. Part II: Eğirdir (Isparta). Fitoterapia. 1999;70(6):593-610. https://doi.org/10.1016/S0367-326X(99)00074-X
- 14. Gürdal B, Kültür S. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J. Ethnopharmacol. 2013;146(1):113–126. https://doi.org/10.1016/j.jep.2012.12.012
- 15. Sayah K, Marmouzi I, Naceiri Mrabti H, Cherrah Y, Faouzi ME. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed Res. Int. 2017;2789482. https://doi.org/10.1155/2017/2789482
- 16. Şekeroğlu N, Gezici S. Coronavirus pandemic and some Turkish medicinal plants. Anatolian Clinic. 2020;25(Suppl 1):163-182. https://doi.org/10.21673/anadoluklin.724210
- 17. Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front. Chem.2014;2:35. https://doi.org/10.3389/fchem.2014.00035
- 18. Fang X, Wang R, Sun S, Liu X, Liu X, Wang W, Okada Y. Chemical constituents from the leaves of Cistus parviflorus. J. Chin. Pharm. Sci. 2018;27(1):40-50. https://doi.org/10.5246/jcps.2018.01.005
- 19. Rauwald HW, Liebold T, Grötzinger K, Lehmann J, Kuchta K. Labdanum and Labdanes of C. creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling. Phytomedicine 2019;60:152977. https://doi.org/10.1016/j.phymed.2019.152977
- 20. Marandino A, Vagnozzi A, Tomás G, Techera C, Gerez R, Hernández M, Williman J, Realpe M, Greif G, Panzera Y, Pérez R. Origin of New Lineages by Recombination and Mutation in Avian Infectious Bronchitis Virus from South America. Viruses. 2022;14(10):2095. https://doi.org/10.3390/v14102095
- 21. Brandão PE, Hora AS, Silva SOS, Berg M, Taniwaki SA. Complete Genome Sequence of Avian Coronavirus Strain D274. Microbiol. Resour. Announc. 2018;7(8):e01003-18. https://doi.org/10.1128/MRA.01003-18
- 22. Mohajer Shojai T, Ghalyanchi Langeroudi A, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458-267.
- 23. Çevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ (Clinical research ed.). 2020;371:m3862. https://doi.org/10.1136/bmj.m3862
- 24. Demiroz T, Nalbantsoy A, Kose FA, Baykan S. Phytochemical composition and antioxidant, cytotoxic and anti-inflammatory properties of Psephellus goeksunensis (Aytaç & H. Duman) Greuter & Raab-Straube. S Afr J Bot 2020;130:1-7. https://doi.org/10.1016/j.sajb.2019.11.021
- 25. Özer Z, Çarıkçı S, Yılmaz H, Kılıç T, Dirmenci T, Gören AC. Determination of secondary metabolites of Origanum vulgaresubsp. hirtum and O. vulgare subsp. vulgare by LC-MS/MS. J. Chem. Metrol. 2020;14(1):25-34. http://doi.org/10.25135/jcm.33.20.04.1610
- 26. Kınoğlu BK, Dirmenci T, Alwasel SH, Gulcin İ, Goren AC. Quantification of main secondary metabolites of Satureja icarica PH Davis (Lamiaceae) by LC-HRMS and evaluation of antioxidant capacities. J. Chem. Metrol. 2023;17(2):199-214. http://doi.org/10.25135/jcm.2311.2956
- 27. Kızıltaş H, Bingol Z, Goren A, Alwasel S, Gülçin İ. Analysis of phenolic compounds by LC-HRMS and determination of antioxidant and enzyme Inhibitory properties of Verbascum speciousum Schrad. J. Nat. Prod. 2023;17(3):485-500. http://doi.org/10.25135/rnp.370.2210.2598
- 28. Magnusson B. and Örnemark U (eds.). 2014. Eurachem Guide: The fitness for purpose of analytical methods- a laboratory guide to method validation and related topics, (2nd ed.). Available from: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf
- 29. Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra, Dixit R, Singh VK, Desai DN, Kulkarni DD, Dimri U, Singh VP. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement Altern Med 2018;18(1):174. https://doi.org/10.1186/s12906-018-2238-1
- 30. Sarıkahya NB, Varol E, Okkali SG, Yucel B, Margaoan R, Nalbantsoy A. Comparative Study of Antiviral, Cytotoxic, Antioxidant Activities, Total Phenolic Profile and Chemical Content of Propolis Samples in Different Colors from Turkiye. Antioxidants (Basel). 2022;11(10):2075. https://doi.org/10.3390/antiox11102075
- 31. WOAH. 2023. “Avian influenza (infection with avian influenza viruses)”, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 12th. [cited July 2024]. Available from: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access (30 July 2024)
- 32. Detlef Schierstedt SA. 2010. [cited July 2024]. Cistus Extracts. United States Patent Application No: US20100062068A1. Available from: https://patents.google.com/patent/US20100062068A1/en
- 33. Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr. Protoc. Microbiol. 2008;Appendix 4-4E. https://doi.org/10.1002/9780471729259.mca04es11
- 34. Onen AE, Sonmez K, Yildirim F, Demirci EK, Gurel A. Development, analysis, and preclinical evaluation of inactivated vaccine candidate for prevention of Covid-19 disease. All Life. 2022;15(1):771-793. https://doi.org/10.1080/26895293.2022.2099468
- 35. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- 36. Tay FP, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virol. 2012;433(2):421-430. https://doi.org/10.1016/j.virol.2012.08.037
- 37. Lei C, Yang J, Hu J, Sun X. On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virol. Sin. 2021;36(1):141-144. https://doi.org/10.1007/s12250-020-00230-5
- 38. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5(2):85-86. https://doi.org/10.5501/wjv.v5.i2.85
- 39. Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front. Vet. Sci. 2022;9:933274. https://doi.org/10.3389/fvets.2022.933274
- 40. Zalegh I, Akssira M, Bourhi M, Mellouki F, Rhallabi N, Salamatullah AM, Alkaltham MS, Alyahya HK, Mhand RA. A review on Cistus sp.: phytochemical and antimicrobial activities. Plants. 2021;10(6):1214. https://doi.org/10.3390/plants10061214
- 41. Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Frontier in Medicine. 2020;7(444). https://doi.org/10.3389/fmed.2020.00444
- 42. Droebner K, Ehrhardt C, Poetter A, Ludwig S, Planz O. CYSTUS052, a polyphenol-rich plant extract, exerts anti-influenza virus activity in mice. Antivir Res. 2007;76(1):1-10. https://doi.org/10.1016/j.antiviral.2007.04.001
- 43. Ehrhardt C, Hrincius ER, Korte V, Mazur I, Droebner K, Poetter A, Dreschers S, Schmolke M, Planz O, Ludwig S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiv Res. 2007;76(1):38–47. https://doi.org/10.1016/j.antiviral.2007.05.002
- 44. Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, Gürtler L, Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016;6:20394. https://doi.org/10.1038/srep20394
- 45. Kuchta K, Tung NH, Ohta T, Uto T, Raekiansyah M, Grötzinger K, Rausch H, Shoyama Y, Rauwald HW, Morita K. The old pharmaceutical oleoresin labdanum of Cistus creticus L. exerts pronounced in vitro anti-dengue virus activity. J. Ethnopharmacol. 2020;257:112316. https://doi.org/10.1016/j.jep.2019.112316
- 46. Barrajón-Catalán E, Fernández-Arroyo S, Roldán C, Guillén E, Saura D, Segura-Carretero A, Micol V. A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochem Anal:PCA. 2011;22(4):303-312. https://doi.org/10.1002/pca.1281
- 47. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 2020;148:80-89. https://doi.org/10.1016/j.plaphy.2020.01.006
- 48. Carev I, Maravić A, Ilić N, Čikeš Čulić V, Politeo O, Zorić Z, Radan M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life (Basel). 2020;10(7):112. https://doi.org/10.3390/life10070112
- 49. Politeo O, Maravić A, Burčul F, Carev I, Kamenjarin J. Phytochemical composition and antimicrobial activity of essential oils of wild growing Cistus species in Croatia. Nat. Prod. Commun. 2018;13(6):771-774. https://doi.org/10.1177/1934578X1801300631
- 50. Sahraoui R, Djellali S, Chaker AN. Morphological, anatomical, secondary metabolites investigation and physicochemical analysis of Cistus creticus. Phcog Commn. 2013;3(4):58.
- 51. Gürbüz P, Kosar M, Güvenalp Z, Uz A. Demirezer, L. Simultaneous determination of selected flavonoids from different Cistus species by HPLC-PDA. J. Pharm. Res. 2018;22(3). https://doi.org/10.12991/jrp.2018.80
- 52. Das RK, Brar SK, Verma M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol. Rep. 2016;68(2):404-414. https://doi.org/10.1016/j.pharep.2015.10.007
- 53. Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the supplies: metabolism as a novel facet of virus-host interaction. Front. immunol. 2019;10:1533. https://doi.org/10.3389/fimmu.2019.01533
- 54. Critchfield JW, Butera ST, Folks TM. Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovir 1996;12(1):39-46. https://doi.org/10.1089/aid.1996.12.39
- 55. Wu Q, Yu C, Yan Y, Chen J, Zhang C, Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81(5):429-433. https://doi.org/10.1016/j.fitote.2009.12.005
- 56. Ferreira PG, Ferraz AC, Figueiredo JE, Lima CF, Rodrigues, VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira-Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães, JC. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arch. Virol. 2018;163(6):1567-1576. https://doi.org/10.1007/s00705-018-3774-1
- 57. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir Res. 1993;21(4):289-299. https://doi.org/10.1016/0166-3542(93)90008-7
- 58. Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antivir Res. 2005;68(2):66-74. https://doi.org/10.1016/j.antiviral.2005.06.010
- 59. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 2016;9(1):1-7. https://doi.org/10.1016/j.apjtm.2015.12.002
- 60. Schwerdtfeger SM, Melzig MF. Wirkung von Pflanzenextrakten auf die Neuraminidase-Aktivität. Z. fur Phytother. 2008;29(02):65-70. https://doi.org/10.1055/s-2008-1077269
- 61. Wagner H. Multitarget therapy--the future of treatment for more than just functional dyspepsia. Phytomedicine : Int. J. Phytopharm 2006;13(5):122–129. https://doi.org/10.1016/j.phymed.2006.03.021