Review
BibTex RIS Cite
Year 2025, Volume: 45 Issue: 1, 92 - 105, 01.03.2025
https://doi.org/10.52794/hujpharm.1602716

Abstract

References

  • 1. Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations. Cancers. 2021;13:669. https://doi.org/10.3390/cancers13040669
  • 2. Bibi R, Azhar S, Iqbal A, Jabeen H, Kalsoom U-E, Iqbal MM, et al. Prevalence of potential drug-drug interactions in breast cancer patients and determination of their risk factors. J Oncol Pharm Pract Off Publ Int Soc Oncol Pharm Pract. 2021;27:1616–22. https://doi.org/10.1177/1078155220963212
  • 3. Koni AA, Nazzal MA, Suwan BA, Sobuh SS, Abuhazeem NT, Salman AN, et al. A comprehensive evaluation of potentially significant drug-drug, drug-herb, and drug-food interactions among cancer patients receiving anticancer drugs. BMC Cancer. 2022;22:547. https://doi.org/10.1186/s12885-022-09649-3.
  • 4. Oliveira RF, Oliveira AI, Cruz AS, Ribeiro O, Afreixo V, Pimentel F. Polypharmacy and drug interactions in older patients with cancer receiving chemotherapy: associated factors. BMC Geriatr. 2024;24:557. https://doi.org/10.1186/s12877-024-05135-6
  • 5. Sharma A, Jasrotia S, Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:2551–66. https://doi.org/10.1007/s00210-023-02781-2
  • 6. Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. Stat- Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi. nlm.nih.gov/books/NBK564367/
  • 7. Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, et al. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol. 2024;15:342. https://doi.org/10.1007/s12672-024-01195-7
  • 8. Badheeb AM, Ahmed F, Alzahrani HA, Badheeb MA, Obied HY, Seada IA. Cancer Therapy-Related Cardiotoxicity: A Comprehensive Retrospective Analysis at Najran Cancer Center, Saudi Arabia. Cureus. 2023;15:e41287. https://doi. org/10.7759/cureus.41287
  • 9. Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022;10:1367–401. https://doi. org/10.1016/j.gendis.2022.02.007
  • 10. Gonçalves-Nobre JG, Gaspar I, Alpuim Costa D. Anthracyclines and trastuzumab associated cardiotoxicity: is the gut microbiota a friend or foe? – a mini-review. Front Microbiomes [Internet]. 2023 [cited 2025 Feb 23];2. https://doi.org/10.3389/ frmbi.2023.1217820
  • 11. Hassen G, Belete G, Carrera KG, Iriowen RO, Araya H, Alemu T, et al. Clinical Implications of Herbal Supplements in Conventional Medical Practice: A US Perspective. Cureus. 2022;14:e26893. https://doi.org/10.7759/cureus.26893
  • 12. Du M, Luo H, Blumberg JB, Rogers G, Chen F, Ruan M, et al. Dietary Supplement Use among Adult Cancer Survivors in the United States. J Nutr. 2020;150:1499–508. https://doi. org/10.1093/jn/nxaa040
  • 13. Giuliano C, McConachie S, Kalabalik-Hoganson J. Multicenter randomized comparative trial of Micromedex, Micromedex with Watson, or Google to answer drug information questions. J Med Libr Assoc. 2021;109:212–8. https://doi.org/10.5195/ jmla.2021.1085
  • 14. Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers. 2024;16:3123. https://doi.org/10.3390/cancers16183123
  • 15. Lossos C, Liu Y, Kolb KE, Christie AL, Van Scoyk A, Prakadan SM, et al. Mechanisms of lymphoma clearance induced by high-dose alkylating agents. Cancer Discov. 2019;9:944–61. https://doi.org/10.1158/2159-8290.CD-18-1393
  • 16. Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, et al. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed Pharmacother. 2018;101:458–77. https://doi.org/10.1016/j.biopha. 2018.02.108
  • 17. Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, et al. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos. 2023;51:543–59. https://doi.org/10.1124/ dmd.122.001131
  • 18. Syrigou E, Makrilia N, Koti I, Saif MW, Syrigos KN. Hypersensitivity reactions to antineoplastic agents: an overview. Anticancer Drugs. 2009;20:1. https://doi.org/10.1097/ CAD.0b013e32831961b3
  • 19. Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol [Internet]. 2021 [cited 2025 Feb 22];11. https:// doi.org/10.3389/fonc.2021.706030
  • 20. Emadi, A, Karp JE. Cancer Pharmacology: An Illustrated Manual of Anticancer Drugs. Springer Publishing Company; 2023.
  • 21. Booser DJ, Hortobagyi GN. Anthracycline antibiotics in cancer therapy. Focus on drug resistance. Drugs. 1994;47:223–58. https://doi.org/10.2165/00003495-199447020-00002
  • 22. Kciuk M, Marciniak B, Kontek R. Irinotecan—Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int J Mol Sci. 2020;21:4919. https://doi.org/10.3390/ ijms21144919
  • 23. de With M, van Doorn L, Kloet E, van Veggel A, Matic M, de Neijs MJ, et al. Irinotecan-Induced Toxicity: A Pharmacogenetic Study Beyond UGT1A1. Clin Pharmacokinet. 2023;62:1589–97. https://doi.org/10.1007/s40262-023- 01279-7
  • 24. Xu AP, Xu LB, Smith ER, Fleishman JS, Chen Z-S, Xu X-X. Cell death in cancer chemotherapy using taxanes. Front Pharmacol. 2023;14:1338633. https://doi.org/10.1111/cts.70043
  • 25. Abal M, Andreu JM, Barasoain I. Taxanes: Microtubule and Centrosome Targets, and Cell Cycle Dependent Mechanisms of Action. http://www.eurekaselect.com [Internet]. 2003 [cited 2025 Feb 22]; Available from: https://www.eurekaselect. com/article/8787
  • 26. Ismail U, Killeen RB. Taxane Toxicity. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 22]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK589655/
  • 27. Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology. 2021;10:849. https://doi.org/10.3390/biology10090849
  • 28. Awosika AO, Below J, Das JM. Vincristine. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih.gov/ books/NBK537122/
  • 29. Jinna S, Khandhar PB. Hydroxyurea Toxicity. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih. gov/books/NBK537209/
  • 30. Yoham AL, Casadesus D. Tretinoin. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK557478/
  • 31. Leu L, Mohassel L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009;66:1913–8. https://doi.org/10.2146/ajhp080342
  • 32. Field-Smith A, Morgan GJ, Davies FE. Bortezomib (VelcadeTM) in the Treatment of Multiple Myeloma. Ther Clin Risk Manag. 2006;2:271. https://doi.org/10.2147/tcrm.2006.2.3.271
  • 33. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21. https://doi.org/10.1038/s41423-020-0488-6
  • 34. Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating immunotherapy and targeted therapy in cancer treatment: mechanistic insights and clinical implications. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:5557–66. https://doi. org/10.1158/1078-0432.CCR-19-2300
  • 35. Shuel SL. Targeted cancer therapies. Can Fam Physician. 2022;68:515–8. https://doi.org/10.46747/cfp.6807515
  • 36. Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, et al. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci CMLS. 2023;80:104. https://doi.org/10.1007/ s00018-023-04729-4
  • 37. Cho JH, Lim SH, An HJ, Kim KH, Park KU, Kang EJ, et al. Osimertinib for Patients With Non–Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Multicenter, Open-Label, Phase II Trial (KCSG-LU15-09). J Clin Oncol. 2020;38:488–95. https://doi.org/10.1200/JCO.19.00931
  • 38. Wang Z, Zheng Z, Jia S, Liu S, Xiao X, Chen G, et al. Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Front Oncol. 2022;12:1006429. https://doi.org/10.3389/fonc.2022.1006429
  • 39. Chidharla A, Parsi M, Kasi A. Cetuximab. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 23]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK459293/
  • 40. Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. The Oncologist. 2010;15:819–25. https://doi.org/10.1634/theoncologist. 2009-0317
  • 41. Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature- Inspired Payloads. Int J Mol Sci. 2024;25:8651. https://doi.org/10.3390/ijms25168651
  • 42. Martín M, Pandiella A, Vargas-Castrillón E, Díaz-Rodríguez E, Iglesias-Hernangómez T, Martínez Cano C, et al. Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol Hematol. 2024;198:104355. https://doi.org/10.1016/j.critrevonc. 2024.104355
  • 43. Bhatt S, Ashlock BM, Natkunam Y, Sujoy V, Chapman JR, Ramos JC, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122:1233–42. https://doi.org/10.1182/blood- 2013-01-481713
  • 44. Bondar D, Karpichev Y. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for Cancer Therapy: Advances, Challenges, and Future Directions. Biomolecules. 2024;14:1269. https:// doi.org/10.3390/biom14101269
  • 45. Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene. 2025;44:193– 207. https://doi.org/10.1038/s41388-024-03227-6
  • 46. Wang SSY, Jie YE, Cheng SW, Ling GL, Ming HVY. PARP Inhibitors in Breast and Ovarian Cancer. Cancers. 2023;15:2357. https://doi.org/10.3390/cancers15082357
  • 47. Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:1–39. https://doi. org/10.1038/s41392-023-01460-1
  • 48. Gerriets V, Kasi A. Bevacizumab. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 23]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK482126/
  • 49. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol. 2022;29:3044–60. https:// doi.org/10.3390/curroncol29050247
  • 50. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9. https://doi.org/10.1038/ s41422-020-0343-4
  • 51. Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, et al. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021;40:949–82. https:// doi.org/10.1007/s10555-021-09976-0
  • 52. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94:S3–9. https://doi.org/10.1002/ajh.25418
  • 53. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:1–11. https://doi.org/10.1038/s41408-021-00459-7
  • 54. Vaidyanathan G, Dy GK. Toxicities of Targeted Therapies and Their Management. J Target Ther Cancer [Internet]. 2014 [cited 2025 Feb 23];2. Available from: https://www.targetedonc. com/view/toxicities-of-targeted-therapies-and-theirmanagement
  • 55. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primer. 2020;6:38. https://doi.org/10.1038/s41572-020-0160-6
  • 56. de Jonge ME, Huitema AD, Schellens JH, Rodenhuis S, Beijnen JH. Population pharmacokinetics of orally administered paclitaxel formulated in Cremophor EL. Br J Clin Pharmacol. 2005;59:325–34. https://doi.org/10.1111/j.1365- 2125.2004.02325.x
  • 57. Chakraborti S, Stewart A, Maity B. Impact of Chemotherapeutic Drugs Towards Oxidative Stress and Associated Multi-organ Physiological Responses. In: Chakraborti S, editor. Handb Oxidative Stress Cancer Ther Asp [Internet]. Singapore: Springer; 2021 [cited 2025 Feb 23]. p. 1–25. Available from: https://doi.org/10.1007/978-981-16-1247-3_248-1
  • 58. Lyrio RM da C, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia R da H, et al. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. Front Nephrol. 2024;4:1436896. https:// doi.org/10.3389/fneph.2024.1436896
  • 59. Pinkel D. The Use of Body Surface Area as a Criterion of Drug Dosage in Cancer Chemotherapy*. Cancer Res. 1958;18:853–6.
  • 60. Kaestner SA, Sewell GJ. Chemotherapy dosing part I: scientific basis for current practice and use of body surface area. Clin Oncol R Coll Radiol G B. 2007;19:23–37. https://doi. org/10.1016/j.clon.2006.10.010
  • 61. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic fooddrug interactions – A perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59. https://doi.org/10.1016/j. ejps.2019.04.003
  • 62. Flynn A, Galettis P, Gurney H, Michael M, Desar I, Westerdijk K, et al. Therapeutic drug monitoring in anticancer agents: perspectives of Australian medical oncologists. Intern Med J. 2024;54:1458–64. https://doi.org/10.1111/imj.16415
  • 63. Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules. 2023;28:8038. https://doi.org/10.3390/molecules28248038
  • 64. Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet. 2023;48:100488. https://doi.org/10.1016/j.dmpk.2022.100488
  • 65. Devriese LA, Koch KM, Mergui-Roelvink M, Matthys GM, Ma WW, Robidoux A, et al. Effects of low-fat and highfat meals on steady-state pharmacokinetics of lapatinib in patients with advanced solid tumours. Invest New Drugs. 2014;32:481–8. https://doi.org/10.1007/s10637-013-0055-4
  • 66. Santana Martínez S, Marcos Rodríguez JA, Romero Carreño E. Oral chemotherapy: food-drug interactions. Farm Hosp Organo Of Expresion Cient Soc Espanola Farm Hosp. 2015;39:203–9. https://doi.org/10.7399/fh.2015.39.4.8883
  • 67. Fasinu PS, Rapp GK. Herbal Interaction With Chemotherapeutic Drugs—A Focus on Clinically Significant Findings. Front Oncol. 2019;9:1356. https://doi.org/10.3389/fonc.2019.01356
  • 68. Commissioner O of the. Grapefruit Juice and Some Drugs Don’t Mix. FDA [Internet]. 2021 [cited 2024 Nov 13]; Available from: https://www.fda.gov/consumers/consumer-updates/ grapefruit-juice-and-some-drugs-dont-mix
  • 69. Yin OQP, Gallagher N, Li A, Zhou W, Harrell R, Schran H. Effect of Grapefruit Juice on the Pharmacokinetics of Nilotinib in Healthy Participants. J Clin Pharmacol. 2010;50:188–94. https://doi.org/10.1177/0091270009336137
  • 70. Valenzuela B, Rebollo J, Pérez T, Brugarolas A, Pérez‐Ruixo JJ. Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report. Br J Clin Pharmacol. 2011;72:978–81. https://doi.org/10.1111/j.1365-2125.2011.04052.x
  • 71. Batiha GE-S, Beshbishy AM, Wasef LG, Elewa YHA, Al- Sagan AA, El-Hack MEA, et al. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12:872. https://doi.org/10.3390/nu12030872
  • 72. Hajda J, Rentsch KM, Gubler C, Steinert H, Stieger B, Fattinger K. Garlic extract induces intestinal P-glycoprotein, but exhibits no effect on intestinal and hepatic CYP3A4 in humans. Eur J Pharm Sci. 2010;41:729–35. https://doi.org/10.1016/j.ejps.2010.09.016
  • 73. Chen S, Wang Z, Huang Y, O’Barr SA, Wong RA, Yeung S, et al. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review. Evid-Based Complement Altern Med ECAM. 2014;2014:168940. https://doi.org/10.1155/2014/168940
  • 74. Bilgi N, Bell K, Ananthakrishnan AN, Atallah E. Imatinib and Panax Ginseng : A Potential Interaction Resulting in Liver Toxicity. Ann Pharmacother. 2010;44:926–8. https://doi.org/10.1345/aph.1M715
  • 75. Talasaz AH, McGonagle B, HajiQasemi M, Ghelichkhan ZA, Sadeghipour P, Rashedi S, et al. Pharmacokinetic and Pharmacodynamic Interactions between Food or Herbal Products and Oral Anticoagulants: Evidence Review, Practical Recommendations, and Knowledge Gaps. Semin Thromb Hemost. 2024;s-0044-1790258. https://doi.org/10.1055/s-0044-1790258
  • 76. Hansen TS, Nilsen OG. In vitro CYP3A4 Metabolism: Inhibition by Echinacea purpurea and Choice of Substrate for the Evaluation of Herbal Inhibition. Basic Clin Pharmacol Toxicol. 2008;103:445–9. https://doi.org/10.1111/j.1742- 7843.2008.00307.x
  • 77. Le TT, McGrath SR, Fasinu PS. Herb-drug Interactions in Neuropsychiatric Pharmacotherapy – A Review of Clinically Relevant Findings. Curr Neuropharmacol. 2022;20:1736–51. https://doi.org/10.2174/1570159X19666210809100357
  • 78. Goey AKL, Meijerman I, Rosing H, Burgers JA, Mergui-Roelvink M, Keessen M, et al. The effect of Echinacea purpurea on the pharmacokinetics of docetaxel. Br J Clin Pharmacol. 2013;76:467–74. https://doi.org/10.1111/bcp.12159
  • 79. Borrelli F, Izzo AA. Herb–Drug Interactions with St John’s Wort (Hypericum perforatum): an Update on Clinical Observations. AAPS J. 2009;11:710. https://doi.org/10.1208/ s12248-009-9146-8
  • 80. Goey AKL, Meijerman I, Rosing H, Marchetti S, Mergui- Roelvink M, Keessen M, et al. The Effect of St John’s Wort on the Pharmacokinetics of Docetaxel. Clin Pharmacokinet. 2014;53:103–10. https://doi.org/10.1007/s40262-013-0102-5
  • 81. Mathijssen RHJ. Effects of St. John’s Wort on Irinotecan Metabolism. CancerSpectrum Knowl Environ. 2002;94:1247–9.https://doi.org/10.1093/jnci/94.16.1247
  • 82. Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011;117:e75–87. https://doi.org/10.1182/blood-2010-07-294330
  • 83. Emadi SA, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents. Iran J Basic Med Sci. 2022;25:1166– 76. https://doi.org/10.22038/IJBMS.2022.63200.13961
  • 84. Xie Y, Zhang D, Zhang J, Yuan J. Metabolism, Transport and Drug–Drug Interactions of Silymarin. Molecules. 2019;24:3693. https://doi.org/10.3390/molecules24203693
  • 85. Niu J, Straubinger RM, Mager DE. Pharmacodynamic Drug- Drug Interactions. Clin Pharmacol Ther. 2019;105:1395–406. https://doi.org/10.1002/cpt.1434
  • 86. Raoul JL, Moreau-Bachelard C, Gilabert M, Edeline J, Frénel JS. Drug–drug interactions with proton pump inhibitors in cancer patients: an underrecognized cause of treatment failure. ESMO Open. 2023;8:100880. https://doi.org/10.1016/j.esmoop. 2023.100880
  • 87. van Leeuwen R. Drug-Drug Interactions in Patients Treated with Anti-Cancer Agents [Internet]. [Mede mogelijk is gemaakt door Stichting de Merel, Stichting Coolsingel, Pfizer B.V., Boehringer Ingelheim, Bayer B.V., Astra Zenica, Sanofi Aventis en Astellas Pharma B.V.]: Colophon; 2016. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://repub.eur.nl/pub/80060/Proefschrift.RvL.pdf
  • 88. Ruplin A, Segal E, McFarlane T. Review of drugdrug interactions in patients with prostate cancer. J Oncol Pharm Pract. 2024;30:1057–72. https://doi. org/10.1177/10781552241238198
  • 89. Perea JRA, Rada BSD de, Gandía ND. Comparative Pharmacology of Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Int J Clin Pharmacol Pharmacother [Internet]. 2018 [cited 2025 Feb 23];2018. https://doi. org/10.15344/2456-3501/2018/134
  • 90. Li Y, Kazuki Y, Drabison T, Kobayashi K, Fujita K, Xu Y, et al. Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice. Drug Metab Dispos. 2024;52:80– 5. https://doi.org/10.1124/dmd.123.001466
  • 91. Deodhar M, Al Rihani SB, Arwood MJ, Darakjian L, Dow P, Turgeon J, et al. Mechanisms of CYP450 Inhibition: Understanding Drug-Drug Interactions Due to Mechanism-Based Inhibition in Clinical Practice. Pharmaceutics. 2020;12:846. https://doi.org/10.3390/pharmaceutics12090846
  • 92. Blum R, Seymour JF, Toner G. Significant impairment of high-dose methotrexate clearance following vancomycin administration in the absence of overt renal impairment. Ann Oncol. 2002;13:327–30. https://doi.org/10.1093/annonc/mdf021
  • 93. Pilla Reddy V, Bui K, Scarfe G, Zhou D, Learoyd M. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations. Clin Pharmacol Ther. 2019;105:229– 41. https://doi.org/10.1002/cpt.1103
  • 94. Kulkarni A, Singh J. Predicting drug–drug interactions in breast cancer patients treated with CDK4/6 inhibitors and forward planning. Expert Opin Drug Metab Toxicol. 2024;20:225–33. https://doi.org/10.1080/17425255.2024.2341810
  • 95. Goodman RS, Johnson DB, Balko JM. Corticosteroids and Cancer Immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2023;29:2580–7. https://doi.org/10.1158/1078- 0432.CCR-22-3181
  • 96. Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15:813–22. https://doi.org/10.1080/1744666X.2019.1629904
  • 97. Lopez-Martin C, Garrido Siles M, Alcaide-Garcia J, Faus Felipe V. Role of clinical pharmacists to prevent drug interactions in cancer outpatients: a single-centre experience. Int J Clin Pharm. 2014;36:1251–9. https://doi.org/10.1007/s11096-014- 0029-4
  • 98. Nolazco JI, Chang SL. The role of health-related quality of life in improving cancer outcomes. J Clin Transl Res. 2023;9:110–4.
  • 99. Kim B, Lee J, Jang H, Lee N, Mehta J, Jang SB. Effects of Acid-Reducing Agents on the Pharmacokinetics of Lazertinib in Patients with EGFR Mutation-Positive Advanced Non- Small-Cell Lung Cancer. Adv Ther. 2022;39:4757–71. https:// doi.org/10.1007/s12325-022-02286-z
  • 100. Ismail M, Khan S, Khan F, Noor S, Sajid H, Yar S, et al. Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC Cancer. 2020;20:335. https://doi.org/10.1186/s12885-020-06855-9

Common Drug-Drug and Drug-Food Interactions in Antineoplastic Agents: A short update review

Year 2025, Volume: 45 Issue: 1, 92 - 105, 01.03.2025
https://doi.org/10.52794/hujpharm.1602716

Abstract

Cancer treatment regimens often combine chemotherapeutics, supportive therapies, and medications for comorbidities, increasing the risk of drug-drug (DDIs) and drug-food interactions (DFIs). These interactions can alter the pharmacokinetics and pharmacodynamics of anticancer agents, potentially leading to treatment failure, severe adverse events, or hospitalization. Elderly patients, polypharmacy, and the narrow therapeutic index of many chemotherapeutics further compound these challenges. This review explores the mechanisms underlying DDIs and DFIs, focusing on absorption, metabolism, and transport protein modulation—key processes influencing drug bioavailability and toxicity in oncology. Clinically relevant examples are provided to illustrate these interactions. The review underscores the critical role of pharmacy services in identifying, preventing, and managing these interactions, offering actionable strategies to enhance patient safety and treatment efficacy. By addressing these interactions, healthcare providers can mitigate risks, improve therapeutic outcomes, and enhance the quality of life for cancer patients.

References

  • 1. Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug Combination in Cancer Treatment—From Cocktails to Conjugated Combinations. Cancers. 2021;13:669. https://doi.org/10.3390/cancers13040669
  • 2. Bibi R, Azhar S, Iqbal A, Jabeen H, Kalsoom U-E, Iqbal MM, et al. Prevalence of potential drug-drug interactions in breast cancer patients and determination of their risk factors. J Oncol Pharm Pract Off Publ Int Soc Oncol Pharm Pract. 2021;27:1616–22. https://doi.org/10.1177/1078155220963212
  • 3. Koni AA, Nazzal MA, Suwan BA, Sobuh SS, Abuhazeem NT, Salman AN, et al. A comprehensive evaluation of potentially significant drug-drug, drug-herb, and drug-food interactions among cancer patients receiving anticancer drugs. BMC Cancer. 2022;22:547. https://doi.org/10.1186/s12885-022-09649-3.
  • 4. Oliveira RF, Oliveira AI, Cruz AS, Ribeiro O, Afreixo V, Pimentel F. Polypharmacy and drug interactions in older patients with cancer receiving chemotherapy: associated factors. BMC Geriatr. 2024;24:557. https://doi.org/10.1186/s12877-024-05135-6
  • 5. Sharma A, Jasrotia S, Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. Naunyn Schmiedebergs Arch Pharmacol. 2024;397:2551–66. https://doi.org/10.1007/s00210-023-02781-2
  • 6. Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. Stat- Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi. nlm.nih.gov/books/NBK564367/
  • 7. Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, et al. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol. 2024;15:342. https://doi.org/10.1007/s12672-024-01195-7
  • 8. Badheeb AM, Ahmed F, Alzahrani HA, Badheeb MA, Obied HY, Seada IA. Cancer Therapy-Related Cardiotoxicity: A Comprehensive Retrospective Analysis at Najran Cancer Center, Saudi Arabia. Cureus. 2023;15:e41287. https://doi. org/10.7759/cureus.41287
  • 9. Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022;10:1367–401. https://doi. org/10.1016/j.gendis.2022.02.007
  • 10. Gonçalves-Nobre JG, Gaspar I, Alpuim Costa D. Anthracyclines and trastuzumab associated cardiotoxicity: is the gut microbiota a friend or foe? – a mini-review. Front Microbiomes [Internet]. 2023 [cited 2025 Feb 23];2. https://doi.org/10.3389/ frmbi.2023.1217820
  • 11. Hassen G, Belete G, Carrera KG, Iriowen RO, Araya H, Alemu T, et al. Clinical Implications of Herbal Supplements in Conventional Medical Practice: A US Perspective. Cureus. 2022;14:e26893. https://doi.org/10.7759/cureus.26893
  • 12. Du M, Luo H, Blumberg JB, Rogers G, Chen F, Ruan M, et al. Dietary Supplement Use among Adult Cancer Survivors in the United States. J Nutr. 2020;150:1499–508. https://doi. org/10.1093/jn/nxaa040
  • 13. Giuliano C, McConachie S, Kalabalik-Hoganson J. Multicenter randomized comparative trial of Micromedex, Micromedex with Watson, or Google to answer drug information questions. J Med Libr Assoc. 2021;109:212–8. https://doi.org/10.5195/ jmla.2021.1085
  • 14. Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers. 2024;16:3123. https://doi.org/10.3390/cancers16183123
  • 15. Lossos C, Liu Y, Kolb KE, Christie AL, Van Scoyk A, Prakadan SM, et al. Mechanisms of lymphoma clearance induced by high-dose alkylating agents. Cancer Discov. 2019;9:944–61. https://doi.org/10.1158/2159-8290.CD-18-1393
  • 16. Abotaleb M, Kubatka P, Caprnda M, Varghese E, Zolakova B, Zubor P, et al. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed Pharmacother. 2018;101:458–77. https://doi.org/10.1016/j.biopha. 2018.02.108
  • 17. Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, et al. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos. 2023;51:543–59. https://doi.org/10.1124/ dmd.122.001131
  • 18. Syrigou E, Makrilia N, Koti I, Saif MW, Syrigos KN. Hypersensitivity reactions to antineoplastic agents: an overview. Anticancer Drugs. 2009;20:1. https://doi.org/10.1097/ CAD.0b013e32831961b3
  • 19. Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol [Internet]. 2021 [cited 2025 Feb 22];11. https:// doi.org/10.3389/fonc.2021.706030
  • 20. Emadi, A, Karp JE. Cancer Pharmacology: An Illustrated Manual of Anticancer Drugs. Springer Publishing Company; 2023.
  • 21. Booser DJ, Hortobagyi GN. Anthracycline antibiotics in cancer therapy. Focus on drug resistance. Drugs. 1994;47:223–58. https://doi.org/10.2165/00003495-199447020-00002
  • 22. Kciuk M, Marciniak B, Kontek R. Irinotecan—Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int J Mol Sci. 2020;21:4919. https://doi.org/10.3390/ ijms21144919
  • 23. de With M, van Doorn L, Kloet E, van Veggel A, Matic M, de Neijs MJ, et al. Irinotecan-Induced Toxicity: A Pharmacogenetic Study Beyond UGT1A1. Clin Pharmacokinet. 2023;62:1589–97. https://doi.org/10.1007/s40262-023- 01279-7
  • 24. Xu AP, Xu LB, Smith ER, Fleishman JS, Chen Z-S, Xu X-X. Cell death in cancer chemotherapy using taxanes. Front Pharmacol. 2023;14:1338633. https://doi.org/10.1111/cts.70043
  • 25. Abal M, Andreu JM, Barasoain I. Taxanes: Microtubule and Centrosome Targets, and Cell Cycle Dependent Mechanisms of Action. http://www.eurekaselect.com [Internet]. 2003 [cited 2025 Feb 22]; Available from: https://www.eurekaselect. com/article/8787
  • 26. Ismail U, Killeen RB. Taxane Toxicity. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 22]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK589655/
  • 27. Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology. 2021;10:849. https://doi.org/10.3390/biology10090849
  • 28. Awosika AO, Below J, Das JM. Vincristine. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih.gov/ books/NBK537122/
  • 29. Jinna S, Khandhar PB. Hydroxyurea Toxicity. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih. gov/books/NBK537209/
  • 30. Yoham AL, Casadesus D. Tretinoin. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Nov 14]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK557478/
  • 31. Leu L, Mohassel L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2009;66:1913–8. https://doi.org/10.2146/ajhp080342
  • 32. Field-Smith A, Morgan GJ, Davies FE. Bortezomib (VelcadeTM) in the Treatment of Multiple Myeloma. Ther Clin Risk Manag. 2006;2:271. https://doi.org/10.2147/tcrm.2006.2.3.271
  • 33. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21. https://doi.org/10.1038/s41423-020-0488-6
  • 34. Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating immunotherapy and targeted therapy in cancer treatment: mechanistic insights and clinical implications. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26:5557–66. https://doi. org/10.1158/1078-0432.CCR-19-2300
  • 35. Shuel SL. Targeted cancer therapies. Can Fam Physician. 2022;68:515–8. https://doi.org/10.46747/cfp.6807515
  • 36. Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, et al. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci CMLS. 2023;80:104. https://doi.org/10.1007/ s00018-023-04729-4
  • 37. Cho JH, Lim SH, An HJ, Kim KH, Park KU, Kang EJ, et al. Osimertinib for Patients With Non–Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Multicenter, Open-Label, Phase II Trial (KCSG-LU15-09). J Clin Oncol. 2020;38:488–95. https://doi.org/10.1200/JCO.19.00931
  • 38. Wang Z, Zheng Z, Jia S, Liu S, Xiao X, Chen G, et al. Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Front Oncol. 2022;12:1006429. https://doi.org/10.3389/fonc.2022.1006429
  • 39. Chidharla A, Parsi M, Kasi A. Cetuximab. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 23]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK459293/
  • 40. Kazazi-Hyseni F, Beijnen JH, Schellens JHM. Bevacizumab. The Oncologist. 2010;15:819–25. https://doi.org/10.1634/theoncologist. 2009-0317
  • 41. Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature- Inspired Payloads. Int J Mol Sci. 2024;25:8651. https://doi.org/10.3390/ijms25168651
  • 42. Martín M, Pandiella A, Vargas-Castrillón E, Díaz-Rodríguez E, Iglesias-Hernangómez T, Martínez Cano C, et al. Trastuzumab deruxtecan in breast cancer. Crit Rev Oncol Hematol. 2024;198:104355. https://doi.org/10.1016/j.critrevonc. 2024.104355
  • 43. Bhatt S, Ashlock BM, Natkunam Y, Sujoy V, Chapman JR, Ramos JC, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122:1233–42. https://doi.org/10.1182/blood- 2013-01-481713
  • 44. Bondar D, Karpichev Y. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for Cancer Therapy: Advances, Challenges, and Future Directions. Biomolecules. 2024;14:1269. https:// doi.org/10.3390/biom14101269
  • 45. Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene. 2025;44:193– 207. https://doi.org/10.1038/s41388-024-03227-6
  • 46. Wang SSY, Jie YE, Cheng SW, Ling GL, Ming HVY. PARP Inhibitors in Breast and Ovarian Cancer. Cancers. 2023;15:2357. https://doi.org/10.3390/cancers15082357
  • 47. Liu Z-L, Chen H-H, Zheng L-L, Sun L-P, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:1–39. https://doi. org/10.1038/s41392-023-01460-1
  • 48. Gerriets V, Kasi A. Bevacizumab. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Feb 23]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK482126/
  • 49. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, et al. Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol. 2022;29:3044–60. https:// doi.org/10.3390/curroncol29050247
  • 50. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9. https://doi.org/10.1038/ s41422-020-0343-4
  • 51. Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, et al. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021;40:949–82. https:// doi.org/10.1007/s10555-021-09976-0
  • 52. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94:S3–9. https://doi.org/10.1002/ajh.25418
  • 53. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:1–11. https://doi.org/10.1038/s41408-021-00459-7
  • 54. Vaidyanathan G, Dy GK. Toxicities of Targeted Therapies and Their Management. J Target Ther Cancer [Internet]. 2014 [cited 2025 Feb 23];2. Available from: https://www.targetedonc. com/view/toxicities-of-targeted-therapies-and-theirmanagement
  • 55. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primer. 2020;6:38. https://doi.org/10.1038/s41572-020-0160-6
  • 56. de Jonge ME, Huitema AD, Schellens JH, Rodenhuis S, Beijnen JH. Population pharmacokinetics of orally administered paclitaxel formulated in Cremophor EL. Br J Clin Pharmacol. 2005;59:325–34. https://doi.org/10.1111/j.1365- 2125.2004.02325.x
  • 57. Chakraborti S, Stewart A, Maity B. Impact of Chemotherapeutic Drugs Towards Oxidative Stress and Associated Multi-organ Physiological Responses. In: Chakraborti S, editor. Handb Oxidative Stress Cancer Ther Asp [Internet]. Singapore: Springer; 2021 [cited 2025 Feb 23]. p. 1–25. Available from: https://doi.org/10.1007/978-981-16-1247-3_248-1
  • 58. Lyrio RM da C, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia R da H, et al. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. Front Nephrol. 2024;4:1436896. https:// doi.org/10.3389/fneph.2024.1436896
  • 59. Pinkel D. The Use of Body Surface Area as a Criterion of Drug Dosage in Cancer Chemotherapy*. Cancer Res. 1958;18:853–6.
  • 60. Kaestner SA, Sewell GJ. Chemotherapy dosing part I: scientific basis for current practice and use of body surface area. Clin Oncol R Coll Radiol G B. 2007;19:23–37. https://doi. org/10.1016/j.clon.2006.10.010
  • 61. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic fooddrug interactions – A perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59. https://doi.org/10.1016/j. ejps.2019.04.003
  • 62. Flynn A, Galettis P, Gurney H, Michael M, Desar I, Westerdijk K, et al. Therapeutic drug monitoring in anticancer agents: perspectives of Australian medical oncologists. Intern Med J. 2024;54:1458–64. https://doi.org/10.1111/imj.16415
  • 63. Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules. 2023;28:8038. https://doi.org/10.3390/molecules28248038
  • 64. Kambayashi A, Shirasaka Y. Food effects on gastrointestinal physiology and drug absorption. Drug Metab Pharmacokinet. 2023;48:100488. https://doi.org/10.1016/j.dmpk.2022.100488
  • 65. Devriese LA, Koch KM, Mergui-Roelvink M, Matthys GM, Ma WW, Robidoux A, et al. Effects of low-fat and highfat meals on steady-state pharmacokinetics of lapatinib in patients with advanced solid tumours. Invest New Drugs. 2014;32:481–8. https://doi.org/10.1007/s10637-013-0055-4
  • 66. Santana Martínez S, Marcos Rodríguez JA, Romero Carreño E. Oral chemotherapy: food-drug interactions. Farm Hosp Organo Of Expresion Cient Soc Espanola Farm Hosp. 2015;39:203–9. https://doi.org/10.7399/fh.2015.39.4.8883
  • 67. Fasinu PS, Rapp GK. Herbal Interaction With Chemotherapeutic Drugs—A Focus on Clinically Significant Findings. Front Oncol. 2019;9:1356. https://doi.org/10.3389/fonc.2019.01356
  • 68. Commissioner O of the. Grapefruit Juice and Some Drugs Don’t Mix. FDA [Internet]. 2021 [cited 2024 Nov 13]; Available from: https://www.fda.gov/consumers/consumer-updates/ grapefruit-juice-and-some-drugs-dont-mix
  • 69. Yin OQP, Gallagher N, Li A, Zhou W, Harrell R, Schran H. Effect of Grapefruit Juice on the Pharmacokinetics of Nilotinib in Healthy Participants. J Clin Pharmacol. 2010;50:188–94. https://doi.org/10.1177/0091270009336137
  • 70. Valenzuela B, Rebollo J, Pérez T, Brugarolas A, Pérez‐Ruixo JJ. Effect of grapefruit juice on the pharmacokinetics of docetaxel in cancer patients: a case report. Br J Clin Pharmacol. 2011;72:978–81. https://doi.org/10.1111/j.1365-2125.2011.04052.x
  • 71. Batiha GE-S, Beshbishy AM, Wasef LG, Elewa YHA, Al- Sagan AA, El-Hack MEA, et al. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients. 2020;12:872. https://doi.org/10.3390/nu12030872
  • 72. Hajda J, Rentsch KM, Gubler C, Steinert H, Stieger B, Fattinger K. Garlic extract induces intestinal P-glycoprotein, but exhibits no effect on intestinal and hepatic CYP3A4 in humans. Eur J Pharm Sci. 2010;41:729–35. https://doi.org/10.1016/j.ejps.2010.09.016
  • 73. Chen S, Wang Z, Huang Y, O’Barr SA, Wong RA, Yeung S, et al. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review. Evid-Based Complement Altern Med ECAM. 2014;2014:168940. https://doi.org/10.1155/2014/168940
  • 74. Bilgi N, Bell K, Ananthakrishnan AN, Atallah E. Imatinib and Panax Ginseng : A Potential Interaction Resulting in Liver Toxicity. Ann Pharmacother. 2010;44:926–8. https://doi.org/10.1345/aph.1M715
  • 75. Talasaz AH, McGonagle B, HajiQasemi M, Ghelichkhan ZA, Sadeghipour P, Rashedi S, et al. Pharmacokinetic and Pharmacodynamic Interactions between Food or Herbal Products and Oral Anticoagulants: Evidence Review, Practical Recommendations, and Knowledge Gaps. Semin Thromb Hemost. 2024;s-0044-1790258. https://doi.org/10.1055/s-0044-1790258
  • 76. Hansen TS, Nilsen OG. In vitro CYP3A4 Metabolism: Inhibition by Echinacea purpurea and Choice of Substrate for the Evaluation of Herbal Inhibition. Basic Clin Pharmacol Toxicol. 2008;103:445–9. https://doi.org/10.1111/j.1742- 7843.2008.00307.x
  • 77. Le TT, McGrath SR, Fasinu PS. Herb-drug Interactions in Neuropsychiatric Pharmacotherapy – A Review of Clinically Relevant Findings. Curr Neuropharmacol. 2022;20:1736–51. https://doi.org/10.2174/1570159X19666210809100357
  • 78. Goey AKL, Meijerman I, Rosing H, Burgers JA, Mergui-Roelvink M, Keessen M, et al. The effect of Echinacea purpurea on the pharmacokinetics of docetaxel. Br J Clin Pharmacol. 2013;76:467–74. https://doi.org/10.1111/bcp.12159
  • 79. Borrelli F, Izzo AA. Herb–Drug Interactions with St John’s Wort (Hypericum perforatum): an Update on Clinical Observations. AAPS J. 2009;11:710. https://doi.org/10.1208/ s12248-009-9146-8
  • 80. Goey AKL, Meijerman I, Rosing H, Marchetti S, Mergui- Roelvink M, Keessen M, et al. The Effect of St John’s Wort on the Pharmacokinetics of Docetaxel. Clin Pharmacokinet. 2014;53:103–10. https://doi.org/10.1007/s40262-013-0102-5
  • 81. Mathijssen RHJ. Effects of St. John’s Wort on Irinotecan Metabolism. CancerSpectrum Knowl Environ. 2002;94:1247–9.https://doi.org/10.1093/jnci/94.16.1247
  • 82. Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011;117:e75–87. https://doi.org/10.1182/blood-2010-07-294330
  • 83. Emadi SA, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents. Iran J Basic Med Sci. 2022;25:1166– 76. https://doi.org/10.22038/IJBMS.2022.63200.13961
  • 84. Xie Y, Zhang D, Zhang J, Yuan J. Metabolism, Transport and Drug–Drug Interactions of Silymarin. Molecules. 2019;24:3693. https://doi.org/10.3390/molecules24203693
  • 85. Niu J, Straubinger RM, Mager DE. Pharmacodynamic Drug- Drug Interactions. Clin Pharmacol Ther. 2019;105:1395–406. https://doi.org/10.1002/cpt.1434
  • 86. Raoul JL, Moreau-Bachelard C, Gilabert M, Edeline J, Frénel JS. Drug–drug interactions with proton pump inhibitors in cancer patients: an underrecognized cause of treatment failure. ESMO Open. 2023;8:100880. https://doi.org/10.1016/j.esmoop. 2023.100880
  • 87. van Leeuwen R. Drug-Drug Interactions in Patients Treated with Anti-Cancer Agents [Internet]. [Mede mogelijk is gemaakt door Stichting de Merel, Stichting Coolsingel, Pfizer B.V., Boehringer Ingelheim, Bayer B.V., Astra Zenica, Sanofi Aventis en Astellas Pharma B.V.]: Colophon; 2016. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://repub.eur.nl/pub/80060/Proefschrift.RvL.pdf
  • 88. Ruplin A, Segal E, McFarlane T. Review of drugdrug interactions in patients with prostate cancer. J Oncol Pharm Pract. 2024;30:1057–72. https://doi. org/10.1177/10781552241238198
  • 89. Perea JRA, Rada BSD de, Gandía ND. Comparative Pharmacology of Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Int J Clin Pharmacol Pharmacother [Internet]. 2018 [cited 2025 Feb 23];2018. https://doi. org/10.15344/2456-3501/2018/134
  • 90. Li Y, Kazuki Y, Drabison T, Kobayashi K, Fujita K, Xu Y, et al. Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice. Drug Metab Dispos. 2024;52:80– 5. https://doi.org/10.1124/dmd.123.001466
  • 91. Deodhar M, Al Rihani SB, Arwood MJ, Darakjian L, Dow P, Turgeon J, et al. Mechanisms of CYP450 Inhibition: Understanding Drug-Drug Interactions Due to Mechanism-Based Inhibition in Clinical Practice. Pharmaceutics. 2020;12:846. https://doi.org/10.3390/pharmaceutics12090846
  • 92. Blum R, Seymour JF, Toner G. Significant impairment of high-dose methotrexate clearance following vancomycin administration in the absence of overt renal impairment. Ann Oncol. 2002;13:327–30. https://doi.org/10.1093/annonc/mdf021
  • 93. Pilla Reddy V, Bui K, Scarfe G, Zhou D, Learoyd M. Physiologically Based Pharmacokinetic Modeling for Olaparib Dosing Recommendations: Bridging Formulations, Drug Interactions, and Patient Populations. Clin Pharmacol Ther. 2019;105:229– 41. https://doi.org/10.1002/cpt.1103
  • 94. Kulkarni A, Singh J. Predicting drug–drug interactions in breast cancer patients treated with CDK4/6 inhibitors and forward planning. Expert Opin Drug Metab Toxicol. 2024;20:225–33. https://doi.org/10.1080/17425255.2024.2341810
  • 95. Goodman RS, Johnson DB, Balko JM. Corticosteroids and Cancer Immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2023;29:2580–7. https://doi.org/10.1158/1078- 0432.CCR-22-3181
  • 96. Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15:813–22. https://doi.org/10.1080/1744666X.2019.1629904
  • 97. Lopez-Martin C, Garrido Siles M, Alcaide-Garcia J, Faus Felipe V. Role of clinical pharmacists to prevent drug interactions in cancer outpatients: a single-centre experience. Int J Clin Pharm. 2014;36:1251–9. https://doi.org/10.1007/s11096-014- 0029-4
  • 98. Nolazco JI, Chang SL. The role of health-related quality of life in improving cancer outcomes. J Clin Transl Res. 2023;9:110–4.
  • 99. Kim B, Lee J, Jang H, Lee N, Mehta J, Jang SB. Effects of Acid-Reducing Agents on the Pharmacokinetics of Lazertinib in Patients with EGFR Mutation-Positive Advanced Non- Small-Cell Lung Cancer. Adv Ther. 2022;39:4757–71. https:// doi.org/10.1007/s12325-022-02286-z
  • 100. Ismail M, Khan S, Khan F, Noor S, Sajid H, Yar S, et al. Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy. BMC Cancer. 2020;20:335. https://doi.org/10.1186/s12885-020-06855-9
There are 100 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Toxicology
Journal Section Review Articles
Authors

Sonia Sanajou 0000-0002-6751-5266

Terken Baydar 0000-0002-5497-9600

Publication Date March 1, 2025
Submission Date December 16, 2024
Acceptance Date February 25, 2025
Published in Issue Year 2025 Volume: 45 Issue: 1

Cite

Vancouver Sanajou S, Baydar T. Common Drug-Drug and Drug-Food Interactions in Antineoplastic Agents: A short update review. HUJPHARM. 2025;45(1):92-105.