Research Article
BibTex RIS Cite
Year 2023, , 506 - 522, 31.12.2023
https://doi.org/10.21020/husbfd.1170046

Abstract

References

  • 6. Näätänen, R., A.W. Gaillard, and S. Mäntysalo, Early selective-attention effect on evoked potential reinterpreted. Acta psychologica, 1978. 42(4): p. 313-329.
  • 7. Näätänen, R., et al., The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical neurophysiology, 2007. 118(12): p. 2544-2590.
  • 8. Kujala, T., M. Tervaniemi, and E. Schröger, The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological psychology, 2007. 74(1): p. 1-19.
  • 9. Katz, J., et al., Handbook of clinical audiology. Vol. 7. 2015: Wolters Kluwer Health Philadelphia, PA.
  • 10. Kujala, T., et al., Neurophysiological evidence for cortical discrimination impairment of prosody in Asperger syndrome. Neuroscience letters, 2005. 383(3): p. 260-265.
  • 11. Cheour, M., et al., Mismatch negativity shows that 3–6-year-old children can learn to discriminate non-native speech sounds within two months. Neuroscience Letters, 2002. 325(3): p. 187-190.
  • 12. Huotilainen, M., et al., Short-term memory functions of the human fetus recorded with magnetoencephalography. Neuroreport, 2005. 16(1): p. 81-84.
  • 13. Kane, N.M., S.R. Butler, and T. Simpson, Coma outcome prediction using event-related potentials: P3 and mismatch negativity. Audiology and Neurotology, 2000. 5(3-4): p. 186-191.
  • 14. Jessen, F., et al., Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neuroscience letters, 2001. 309(3): p. 185-188.
  • 15. Uwer, R., R. Albrecht, and W. Von Suchodoletz, Automatic processing of tones and speech stimuli in children with specific language impairment. Developmental medicine and child neurology, 2002. 44(8): p. 527-532.
  • 16. Näätänen, R., et al., Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 1997. 385(6615): p. 432-434.
  • 17. Ylinen, S., et al., Mismatch negativity (MMN) elicited by changes in phoneme length: A cross-linguistic study. Brain research, 2006. 1072(1): p. 175-185.
  • 18. Partanen, E., et al., Children’s brain responses to sound changes in pseudo words in a multifeature paradigm. Clinical Neurophysiology, 2013. 124(6): p. 1132-1138.
  • 19. Cheour, M., P.H. Leppänen, and N. Kraus, Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical neurophysiology, 2000. 111(1): p. 4-16.
  • 20. Pulvermüller, F., et al., Memory traces for words as revealed by the mismatch negativity. Neuroimage, 2001. 14(3): p. 607-616.
  • 21. Näätänen, R., et al., The mismatch negativity (MMN): towards the optimal paradigm. Clinical neurophysiology, 2004. 115(1): p. 140-144.
  • 22. Giard, M.H., et al., Brain generators implicated in the processing of auditory stimulus deviance: A topographic event‐related potential study. Psychophysiology, 1990. 27(6): p. 627-640.
  • 23. Todd, J., P.T. Michie, and A.V. Jablensky, Association between reduced duration mismatch negativity (MMN) and raised temporal discrimination thresholds in schizophrenia. Clinical Neurophysiology, 2003. 114(11): p. 2061-2070.
  • 24. Giard, M., et al., Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis. Journal of cognitive neuroscience, 1995. 7(2): p. 133-143.
  • 25. Pakarinen, S., et al., Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 2007. 118(1): p. 177-185.
  • 26. Lovio, R., et al., Auditory discrimination profiles of speech sound changes in 6-year-old children as determined with the multi-feature MMN paradigm. Clinical Neurophysiology, 2009. 120(5): p. 916-921.
  • 27. Pakarinen, S., et al., Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biological psychology, 2009. 82(3): p. 219-226.
  • 28. Pakarinen, S., et al., Fast parametric evaluation of central speech-sound processing with mismatch negativity (MMN). International Journal of Psychophysiology, 2013. 87(1): p. 103-110.
  • 29. Demirezen, M., Demonstration of problems of lexical stress on the pronunciation Turkish English teachers and teacher trainees by computer. Procedia-Social and Behavioral Sciences, 2012. 46: p. 3011-3016.
  • 30. Pakarinen, S., M. Huotilainen, and R. Näätänen, The mismatch negativity (MMN) with no standard stimulus. Clinical Neurophysiology, 2010. 121(7): p. 1043-1050.
  • 31. Näätänen, R. and I. Winkler, The concept of auditory stimulus representation in cognitive neuroscience. Psychological bulletin, 1999. 125(6): p. 826.
  • 32. Paukkunen, A.K., M. Leminen, and R. Sepponen, The effect of measurement error on the test–retest reliability of repeated mismatch negativity measurements. Clinical neurophysiology, 2011. 122(11): p. 2195-2202.
  • 33. Sendesen, E., N. Erbil, and M.D. Türkyılmaz, The mismatch negativity responses of individuals with tinnitus with normal extended high-frequency hearing—is it possible to use mismatch negativity in the evaluation of tinnitus? European Archives of Oto-Rhino-Laryngology, 2021: p. 1-10.
  • 34. Javitt, D.C., et al., Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 1998. 108(2): p. 143-153.
  • 35. Oken, B.S., M.C. Salinsky, and S. Elsas, Vigilance, alertness, or sustained attention: physiological basis and measurement. Clinical neurophysiology, 2006. 117(9): p. 1885-1901.
  • 36. Wang, X., et al., Effects of sleep on pain-related somatosensory evoked potentials in humans. Neuroscience research, 2003. 45(1): p. 53-57.

Developing a multi-feature paradigm for Turkish- a test-retest reliability

Year 2023, , 506 - 522, 31.12.2023
https://doi.org/10.21020/husbfd.1170046

Abstract

Objectives MMN, which is important in defining pathologies in the central auditory system, occur with different responses in each native language. Therefore, it is crucial that the stimuli used in MMN must be structured according to the native languages. This study aims to develop a multi-feature paradigm that includes speech stimulus suitable for the acoustic characteristics of Turkish.
Materıals and Methods Thirty participants (15 Males, 15 Females) with normal hearing between the ages of 20-31 (24.37±3.75) were included in this study. Participants' hearing threshold (0.125-8 kHz) was less than 20 dB HL. MMN responses were recorded from 22 surface scalp electrodes. The speech stimuli /te/ and /pi/ were chosen as standard stimuli. Amplitude and latency parameters of the MMN responses of five different deviants: decrease and increase in intensity, decrease in fundamental frequency, decrease in duration, and consonant and vowel change were evaluated.
Results According to the Fz electrode, there was no statistically significant difference between the amplitude and latencies of the test-retest MMN responses of the /te/ and /pi/ stimulus according to paired sample t-test (p>0.05). A statistically significant relationship was found between the test-retest for the /te/ and /pi/ stimulus amplitudes in deviant types (p<0.05).
Conclusion This study will enable the use of speech stimuli appropriate to the native language in MMN application to be conducted in native Turkish speakers, allow a more comprehensive evaluation of auditory processing skills compared to conventional tonal stimuli, and contribute to the interpretation of possible component changes in the MMN waveform in healthy or pathological conditions of the central auditory system.

References

  • 6. Näätänen, R., A.W. Gaillard, and S. Mäntysalo, Early selective-attention effect on evoked potential reinterpreted. Acta psychologica, 1978. 42(4): p. 313-329.
  • 7. Näätänen, R., et al., The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical neurophysiology, 2007. 118(12): p. 2544-2590.
  • 8. Kujala, T., M. Tervaniemi, and E. Schröger, The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biological psychology, 2007. 74(1): p. 1-19.
  • 9. Katz, J., et al., Handbook of clinical audiology. Vol. 7. 2015: Wolters Kluwer Health Philadelphia, PA.
  • 10. Kujala, T., et al., Neurophysiological evidence for cortical discrimination impairment of prosody in Asperger syndrome. Neuroscience letters, 2005. 383(3): p. 260-265.
  • 11. Cheour, M., et al., Mismatch negativity shows that 3–6-year-old children can learn to discriminate non-native speech sounds within two months. Neuroscience Letters, 2002. 325(3): p. 187-190.
  • 12. Huotilainen, M., et al., Short-term memory functions of the human fetus recorded with magnetoencephalography. Neuroreport, 2005. 16(1): p. 81-84.
  • 13. Kane, N.M., S.R. Butler, and T. Simpson, Coma outcome prediction using event-related potentials: P3 and mismatch negativity. Audiology and Neurotology, 2000. 5(3-4): p. 186-191.
  • 14. Jessen, F., et al., Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neuroscience letters, 2001. 309(3): p. 185-188.
  • 15. Uwer, R., R. Albrecht, and W. Von Suchodoletz, Automatic processing of tones and speech stimuli in children with specific language impairment. Developmental medicine and child neurology, 2002. 44(8): p. 527-532.
  • 16. Näätänen, R., et al., Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 1997. 385(6615): p. 432-434.
  • 17. Ylinen, S., et al., Mismatch negativity (MMN) elicited by changes in phoneme length: A cross-linguistic study. Brain research, 2006. 1072(1): p. 175-185.
  • 18. Partanen, E., et al., Children’s brain responses to sound changes in pseudo words in a multifeature paradigm. Clinical Neurophysiology, 2013. 124(6): p. 1132-1138.
  • 19. Cheour, M., P.H. Leppänen, and N. Kraus, Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical neurophysiology, 2000. 111(1): p. 4-16.
  • 20. Pulvermüller, F., et al., Memory traces for words as revealed by the mismatch negativity. Neuroimage, 2001. 14(3): p. 607-616.
  • 21. Näätänen, R., et al., The mismatch negativity (MMN): towards the optimal paradigm. Clinical neurophysiology, 2004. 115(1): p. 140-144.
  • 22. Giard, M.H., et al., Brain generators implicated in the processing of auditory stimulus deviance: A topographic event‐related potential study. Psychophysiology, 1990. 27(6): p. 627-640.
  • 23. Todd, J., P.T. Michie, and A.V. Jablensky, Association between reduced duration mismatch negativity (MMN) and raised temporal discrimination thresholds in schizophrenia. Clinical Neurophysiology, 2003. 114(11): p. 2061-2070.
  • 24. Giard, M., et al., Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis. Journal of cognitive neuroscience, 1995. 7(2): p. 133-143.
  • 25. Pakarinen, S., et al., Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clinical Neurophysiology, 2007. 118(1): p. 177-185.
  • 26. Lovio, R., et al., Auditory discrimination profiles of speech sound changes in 6-year-old children as determined with the multi-feature MMN paradigm. Clinical Neurophysiology, 2009. 120(5): p. 916-921.
  • 27. Pakarinen, S., et al., Fast multi-feature paradigm for recording several mismatch negativities (MMNs) to phonetic and acoustic changes in speech sounds. Biological psychology, 2009. 82(3): p. 219-226.
  • 28. Pakarinen, S., et al., Fast parametric evaluation of central speech-sound processing with mismatch negativity (MMN). International Journal of Psychophysiology, 2013. 87(1): p. 103-110.
  • 29. Demirezen, M., Demonstration of problems of lexical stress on the pronunciation Turkish English teachers and teacher trainees by computer. Procedia-Social and Behavioral Sciences, 2012. 46: p. 3011-3016.
  • 30. Pakarinen, S., M. Huotilainen, and R. Näätänen, The mismatch negativity (MMN) with no standard stimulus. Clinical Neurophysiology, 2010. 121(7): p. 1043-1050.
  • 31. Näätänen, R. and I. Winkler, The concept of auditory stimulus representation in cognitive neuroscience. Psychological bulletin, 1999. 125(6): p. 826.
  • 32. Paukkunen, A.K., M. Leminen, and R. Sepponen, The effect of measurement error on the test–retest reliability of repeated mismatch negativity measurements. Clinical neurophysiology, 2011. 122(11): p. 2195-2202.
  • 33. Sendesen, E., N. Erbil, and M.D. Türkyılmaz, The mismatch negativity responses of individuals with tinnitus with normal extended high-frequency hearing—is it possible to use mismatch negativity in the evaluation of tinnitus? European Archives of Oto-Rhino-Laryngology, 2021: p. 1-10.
  • 34. Javitt, D.C., et al., Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 1998. 108(2): p. 143-153.
  • 35. Oken, B.S., M.C. Salinsky, and S. Elsas, Vigilance, alertness, or sustained attention: physiological basis and measurement. Clinical neurophysiology, 2006. 117(9): p. 1885-1901.
  • 36. Wang, X., et al., Effects of sleep on pain-related somatosensory evoked potentials in humans. Neuroscience research, 2003. 45(1): p. 53-57.
There are 31 citations in total.

Details

Primary Language English
Subjects Audiology
Journal Section Articles
Authors

Eser Sendesen 0000-0001-6363-6071

Selin Kargül 0000-0003-0839-4588

Didem Türkyılmaz 0000-0001-5719-2355

Early Pub Date July 13, 2023
Publication Date December 31, 2023
Submission Date September 2, 2022
Published in Issue Year 2023

Cite

APA Sendesen, E., Kargül, S., & Türkyılmaz, D. (2023). Developing a multi-feature paradigm for Turkish- a test-retest reliability. Hacettepe University Faculty of Health Sciences Journal, 10(3), 506-522. https://doi.org/10.21020/husbfd.1170046