Research Article
BibTex RIS Cite
Year 2022, , 1 - 13, 29.12.2022
https://doi.org/10.56484/iamr.1165943

Abstract

References

  • Moore WE, Holdeman L V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied microbiology. 1974;27(5):961-979.
  • Savage DC. Microbial Ecology of the Gastrointestinal Tract. Annual Review of Microbiology. 1977;31(1):107-133. doi:10.1146/annurev.mi.31.100177.000543
  • Gautam S, Gniadek TJ, Kim T, Spiegel DA. Exterior design: Strategies for redecorating the bacterial surface with small molecules. Trends in Biotechnology. 2013;31(4):258-267. doi:10.1016/j.tibtech.2013.01.012
  • Kleanthous C, Armitage JP. The bacterial cell envelope. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1679):1-17. doi:10.1098/rstb.2015.0019
  • Bohara RA, Pawar SH. Innovative Developments in Bacterial Detection with Magnetic Nanoparticles. Applied Biochemistry and Biotechnology. 2015;176(4):1044-1058. doi:10.1007/s12010-015-1628-9
  • Gracias KS, McKillip JL. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian Journal of Microbiology. 2004;50(11):883-890. doi:10.1139/w04-080
  • Jain KK. Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta. 2005;358(1-2):37-54. doi:10.1016/j.cccn.2005.03.014
  • Muthukumar A, Zitterkopf NL, Payne D. Molecular Tools for the Detection and Characterization of Bacterial Infections: A Review. Laboratory Medicine. 2008;39(7):430-436. doi:10.1309/m6mbu1kgp0ff1c00
  • Yuan P, Ding X, Yang YY, Xu QH. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Advanced Healthcare Materials. 2018;7(13):1-17. doi:10.1002/adhm.201701392
  • Pourakbari R, Shadjou N, Yousefi H, et al. Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta. 2019;186(12). doi:10.1007/s00604-019-3966-8
  • Wang J, Wu H, Yang Y, et al. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection. Nanoscale. 2018;10(1):132-141. doi:10.1039/c7nr06373c
  • Tural B, Tural S, Ertaş E, Yalinkiliç I, Demir AS. Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. Journal of Molecular Catalysis B: Enzymatic. 2013;95:41-47. doi:10.1016/j.molcatb.2013.05.023
  • Tural B, Ertaş E, Enez B, Fincan SA, Tural S. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering. 2017;5(5):4795-4802. doi:10.1016/j.jece.2017.09.019
  • Veisi H, Pirhayati M, Kakanejadifard A. Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Tetrahedron Letters. 2017;58(45):4269-4276. doi:10.1016/j.tetlet.2017.09.078
  • Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M. Fe3O4-adenine-Zn: A novel, green, and magnetically recoverable catalyst for the synthesis of 5-substituted tetrazoles and oxidation of sulfur containing compounds. New Journal of Chemistry. 2017;41(20):11714-11721. doi:10.1039/c7nj02337e
  • Tural S, Ece MŞ, Tural B. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicology and Environmental Safety. 2018;162(March):245-252. doi:10.1016/j.ecoenv.2018.06.066
  • Suaifan GARY, Alhogail S, Zourob M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors and Bioelectronics. 2017;90(November 2016):230-237. doi:10.1016/j.bios.2016.11.047

Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria

Year 2022, , 1 - 13, 29.12.2022
https://doi.org/10.56484/iamr.1165943

Abstract

Objective: Anaerobic bacteria, which make up an important part of normal body flora, may lead to serious life-threatening infections. Since isolation and identification of anaerobic bacteria require time-consuming, sensitive, and difficult methods, they can only be performed in certain clinical laboratories. For this reason, diagnosis and treatment of anaerobic infections are delayed and drug resistance is observed due to empirical treatment. New methods that will enable the early identification of these bacteria will help reduce the duration of treatment and mortality rates due to anaerobic infections.
Method: In this study, it is aimed to design magnetic nanoparticles attached to N-methyl-D-glucamine (Mag-NMDG) to catch anaerobic bacteria for rapid identification. Mag-NMDG nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometer (VSM).
Results: Mag-NMDG nanoparticles were applied to gram positive and gram negative anaerobic bacteria such as Actinomyces odontolyticus, Prevotella buccae, Veillonella parvula, Bifidobacterium dentium and Bacteroides fragilis isolated from culture media. The binding of bacteria to Mag-NMDG was determined by microscope images, McFarland values, and MALDI-TOF MS identification scores.
Conclusion: As a result of this study, it was concluded that the Mag-NMDG nanoparticles could be used to isolate anaerobic bacteria directly from samples. Thus, it is foreseen that many time-consuming and troublesome steps in the isolation and identification stages can be eliminated.

References

  • Moore WE, Holdeman L V. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied microbiology. 1974;27(5):961-979.
  • Savage DC. Microbial Ecology of the Gastrointestinal Tract. Annual Review of Microbiology. 1977;31(1):107-133. doi:10.1146/annurev.mi.31.100177.000543
  • Gautam S, Gniadek TJ, Kim T, Spiegel DA. Exterior design: Strategies for redecorating the bacterial surface with small molecules. Trends in Biotechnology. 2013;31(4):258-267. doi:10.1016/j.tibtech.2013.01.012
  • Kleanthous C, Armitage JP. The bacterial cell envelope. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1679):1-17. doi:10.1098/rstb.2015.0019
  • Bohara RA, Pawar SH. Innovative Developments in Bacterial Detection with Magnetic Nanoparticles. Applied Biochemistry and Biotechnology. 2015;176(4):1044-1058. doi:10.1007/s12010-015-1628-9
  • Gracias KS, McKillip JL. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian Journal of Microbiology. 2004;50(11):883-890. doi:10.1139/w04-080
  • Jain KK. Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta. 2005;358(1-2):37-54. doi:10.1016/j.cccn.2005.03.014
  • Muthukumar A, Zitterkopf NL, Payne D. Molecular Tools for the Detection and Characterization of Bacterial Infections: A Review. Laboratory Medicine. 2008;39(7):430-436. doi:10.1309/m6mbu1kgp0ff1c00
  • Yuan P, Ding X, Yang YY, Xu QH. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Advanced Healthcare Materials. 2018;7(13):1-17. doi:10.1002/adhm.201701392
  • Pourakbari R, Shadjou N, Yousefi H, et al. Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchimica Acta. 2019;186(12). doi:10.1007/s00604-019-3966-8
  • Wang J, Wu H, Yang Y, et al. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection. Nanoscale. 2018;10(1):132-141. doi:10.1039/c7nr06373c
  • Tural B, Tural S, Ertaş E, Yalinkiliç I, Demir AS. Purification and covalent immobilization of benzaldehyde lyase with heterofunctional chelate-epoxy modified magnetic nanoparticles and its carboligation reactivity. Journal of Molecular Catalysis B: Enzymatic. 2013;95:41-47. doi:10.1016/j.molcatb.2013.05.023
  • Tural B, Ertaş E, Enez B, Fincan SA, Tural S. Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering. 2017;5(5):4795-4802. doi:10.1016/j.jece.2017.09.019
  • Veisi H, Pirhayati M, Kakanejadifard A. Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Tetrahedron Letters. 2017;58(45):4269-4276. doi:10.1016/j.tetlet.2017.09.078
  • Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M. Fe3O4-adenine-Zn: A novel, green, and magnetically recoverable catalyst for the synthesis of 5-substituted tetrazoles and oxidation of sulfur containing compounds. New Journal of Chemistry. 2017;41(20):11714-11721. doi:10.1039/c7nj02337e
  • Tural S, Ece MŞ, Tural B. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicology and Environmental Safety. 2018;162(March):245-252. doi:10.1016/j.ecoenv.2018.06.066
  • Suaifan GARY, Alhogail S, Zourob M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors and Bioelectronics. 2017;90(November 2016):230-237. doi:10.1016/j.bios.2016.11.047
There are 17 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Research Paper
Authors

Alican Bilden 0000-0003-1119-3859

Erdal Ertaş 0000-0002-0325-1257

Bilsen Tural 0000-0001-7555-2481

Fatih Çakır 0000-0002-9808-4366

Selahattin Atmaca 0000-0002-2730-5790

Servet Tural 0000-0003-2479-9438

Publication Date December 29, 2022
Published in Issue Year 2022

Cite

APA Bilden, A., Ertaş, E., Tural, B., Çakır, F., et al. (2022). Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria. International Archives of Medical Research, 14(2), 1-13. https://doi.org/10.56484/iamr.1165943
AMA Bilden A, Ertaş E, Tural B, Çakır F, Atmaca S, Tural S. Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria. IAMR. December 2022;14(2):1-13. doi:10.56484/iamr.1165943
Chicago Bilden, Alican, Erdal Ertaş, Bilsen Tural, Fatih Çakır, Selahattin Atmaca, and Servet Tural. “Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria”. International Archives of Medical Research 14, no. 2 (December 2022): 1-13. https://doi.org/10.56484/iamr.1165943.
EndNote Bilden A, Ertaş E, Tural B, Çakır F, Atmaca S, Tural S (December 1, 2022) Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria. International Archives of Medical Research 14 2 1–13.
IEEE A. Bilden, E. Ertaş, B. Tural, F. Çakır, S. Atmaca, and S. Tural, “Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria”, IAMR, vol. 14, no. 2, pp. 1–13, 2022, doi: 10.56484/iamr.1165943.
ISNAD Bilden, Alican et al. “Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria”. International Archives of Medical Research 14/2 (December 2022), 1-13. https://doi.org/10.56484/iamr.1165943.
JAMA Bilden A, Ertaş E, Tural B, Çakır F, Atmaca S, Tural S. Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria. IAMR. 2022;14:1–13.
MLA Bilden, Alican et al. “Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria”. International Archives of Medical Research, vol. 14, no. 2, 2022, pp. 1-13, doi:10.56484/iamr.1165943.
Vancouver Bilden A, Ertaş E, Tural B, Çakır F, Atmaca S, Tural S. Use of Magnetic Nanoparticles to Isolate Anaerobic Bacteria. IAMR. 2022;14(2):1-13.

All articles published by DUJE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. 24456