Research Article
BibTex RIS Cite
Year 2023, , 23 - 34, 15.04.2023
https://doi.org/10.35860/iarej.1171637

Abstract

References

  • 1. Elbel, S. and Lawrence, N., Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016. 62: p. 1-18.
  • 2. Ersoy, H. K. and Bilir, N., Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012. 226(5): p. 623-635.
  • 3. Wang, X., Yu, J., Zhou, M. And Lv, X., Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers. Energy, 2014. 70: p. 635-642.
  • 4. Boumaraf, L., Haberschill, P. and Lallemand, A., Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf. International Journal of Refrigeration, 2014. 45: p. 148-159.
  • 5. Liu, X., Yu, J. and Yan, G., Theoretical investigation on an ejector–expansion refrigeration cycle using zeotropic mixture R290/R600a for applications in domestic refrigerator/freezers. Applied Thermal Engineering, 2015. 90: p. 703-710.
  • 6. Xing, M., Yan, G. and Yu, J., Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle. Energy Conversion and Management, 2015. 92: p. 431-436.
  • 7. Zhou, M., Wang, X. and Yu, J., Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy Conversion and Management, 2013. 73: p. 278-284.
  • 8. Lawrence, N. and Elbel, S., Experimental and analytical investigation of automotive ejector air-conditioning cycles using low-pressure refrigerants. Internatıonal Refrıgeratıon and Air Conditioning Conference. 2012. Purdue: p. 1169.
  • 9. Lawrence, N. and Elbel, S., Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. International Journal of Refrigeration, 2014. 38: p. 310-322.
  • 10. Jeon, Y., Kim, S., Kim, D., Chung, H. J. and Kim, Y., Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions. Applied Energy, 2017. 205: p. 1059-1067.
  • 11. Jeon, Y., Kim, D., Jung, J., Jang, D. S. and Kim, Y., Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a. Energy, 2018. 161: p. 1085-1095.
  • 12. Sag, N. B., Ersoy, H. K., Hepbasli, A. and Halkaci, H. S., Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities. Energy Conversion and Management, 2015. 90: p. 184-194.
  • 13. Ersoy, H. K. and Bilir, N., The influence of ejector component efficiencies on performance of ejector expander refrigeration cycle and exergy analysis. International Journal of Exergy, 2010. 7(4): p. 425-438.
  • 14. Bilir, N., Ersoy, H. K. and Hepbaşlı, A., Farklı soğutucu akışkanlar için genleştirici olarak ejektör kullanan kompresörlü soğutucunun performans analizi, X. Ulusal Tesisat Mühendisliği Kongresi. 2011. İzmir: p. 1317-1325.
  • 15. Baruah, A., Saini, D. K. and Sachdeva, G., Exergy investigation of a vapor compression system comprising ejector for isentropic expansion, In Journal of Physics: Conference Series. 2019. IOP Publishing: p. 012125.
  • 16. Gao, Y., He, G., Cai, D. and Fan, M., Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device. Energy, 2020. 212: p. 118614.
  • 17. Yari, M., Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander. International Journal of Exergy, 2008. 5(3): p. 326-340.
  • 18. Takleh, H. R. and Zare, V., Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization. International Journal of Refrigeration, 2019. 101: p. 56-70.
  • 19. Cui, Z., Qian, S., & Yu, J., Performance assessment of an ejector enhanced dual temperature refrigeration cycle for domestic refrigerator application. Applied Thermal Engineering, 2020. 168: p. 114826.
  • 20. Chen, Q., Hwang, Y., Yan, G., and Yu, J., Theoretical investigation on the performance of an ejector enhanced refrigeration cycle using hydrocarbon mixture R290/R600a. Applied Thermal Engineering, 2020. 164: p. 114456.
  • 21. Bai, T., Yan, G., and Yu, J., Experimental investigation of an ejector-enhanced auto-cascade refrigeration system. Applied Thermal Engineering, 2018. 129: p. 792-801.
  • 22. Jeon, Y., Kim, D., Jung, J., Jang, D. S., and Kim, Y., Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a. Energy, 2018. 161: p. 1085-1095.
  • 23. Kotas, T. J., The exergy method of thermal plant analysis. Elsevier. 2013.
  • 24. Kornhauser, A. A., The use of an ejector as a refrigerant expander, International Refrigeration and Air Conditioning Conference. 1990. Purdue: p. 10-19.
  • 25. Sánchez, D., Cabello, R., Llopis, R., Arauzo, I., Catalán-Gil, J. and Torrella, E., Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017. 74: p. 269-282.
  • 26. Yadav, A. K. and Neeraj., Performance analysis of refrigerants R1234yf, R1234ze and R134a in ejector-based refrigeration cycle. International Journal of Air-Conditioning and Refrigeration, 2018. 26(03): p. 1850026.

Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions

Year 2023, , 23 - 34, 15.04.2023
https://doi.org/10.35860/iarej.1171637

Abstract

Refrigeration systems progress in parallel with the development of technology and the ways of saving energy in refrigeration systems are being researched. The literature suggests that incorporating ejectors in refrigeration systems can boost the coefficient of performance (COP) of the system. By utilizing ejector expansion, it is possible to improve the performance of the vapor compression refrigeration cycle (VCRC) by recapturing the expansion work that is typically lost during the expansion valve process. The present study investigation aims to contribute to the field of refrigeration by exploring the optimum pressure drop for three commonly utilized refrigerants. Specifically, the study scrutinizes the performance of an ejector based refrigeration cycle that incorporates a constant pressure mixing ejector. Utilizing the energy and exergy analyses are conducted to assess the system's performance with R134a, R600a, and R290 refrigerants across five distinct evaporator temperatures, namely 0°C, -5°C, -10°C, -20°C, and -30°C. The study further determines the optimum pressure drops in the secondary nozzle and the ejector area ratio at a specified condenser temperature, and examines the resultant total exergy destruction and exergy efficiency of the system. For R290 refrigerant; performance improvement ratio, decrease in total exergy destruction and exergy efficiency improvement ratios were found as 1.23, 54.02% and 22.97%, respectively. As a result, R290 is the most appropriate refrigerant for ejector expansion refrigeration cycle (EERC) among the refrigerants investigated as a result of the energy and exergy analyses.

References

  • 1. Elbel, S. and Lawrence, N., Review of recent developments in advanced ejector technology. International Journal of Refrigeration, 2016. 62: p. 1-18.
  • 2. Ersoy, H. K. and Bilir, N., Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012. 226(5): p. 623-635.
  • 3. Wang, X., Yu, J., Zhou, M. And Lv, X., Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers. Energy, 2014. 70: p. 635-642.
  • 4. Boumaraf, L., Haberschill, P. and Lallemand, A., Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf. International Journal of Refrigeration, 2014. 45: p. 148-159.
  • 5. Liu, X., Yu, J. and Yan, G., Theoretical investigation on an ejector–expansion refrigeration cycle using zeotropic mixture R290/R600a for applications in domestic refrigerator/freezers. Applied Thermal Engineering, 2015. 90: p. 703-710.
  • 6. Xing, M., Yan, G. and Yu, J., Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle. Energy Conversion and Management, 2015. 92: p. 431-436.
  • 7. Zhou, M., Wang, X. and Yu, J., Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers. Energy Conversion and Management, 2013. 73: p. 278-284.
  • 8. Lawrence, N. and Elbel, S., Experimental and analytical investigation of automotive ejector air-conditioning cycles using low-pressure refrigerants. Internatıonal Refrıgeratıon and Air Conditioning Conference. 2012. Purdue: p. 1169.
  • 9. Lawrence, N. and Elbel, S., Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. International Journal of Refrigeration, 2014. 38: p. 310-322.
  • 10. Jeon, Y., Kim, S., Kim, D., Chung, H. J. and Kim, Y., Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions. Applied Energy, 2017. 205: p. 1059-1067.
  • 11. Jeon, Y., Kim, D., Jung, J., Jang, D. S. and Kim, Y., Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a. Energy, 2018. 161: p. 1085-1095.
  • 12. Sag, N. B., Ersoy, H. K., Hepbasli, A. and Halkaci, H. S., Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities. Energy Conversion and Management, 2015. 90: p. 184-194.
  • 13. Ersoy, H. K. and Bilir, N., The influence of ejector component efficiencies on performance of ejector expander refrigeration cycle and exergy analysis. International Journal of Exergy, 2010. 7(4): p. 425-438.
  • 14. Bilir, N., Ersoy, H. K. and Hepbaşlı, A., Farklı soğutucu akışkanlar için genleştirici olarak ejektör kullanan kompresörlü soğutucunun performans analizi, X. Ulusal Tesisat Mühendisliği Kongresi. 2011. İzmir: p. 1317-1325.
  • 15. Baruah, A., Saini, D. K. and Sachdeva, G., Exergy investigation of a vapor compression system comprising ejector for isentropic expansion, In Journal of Physics: Conference Series. 2019. IOP Publishing: p. 012125.
  • 16. Gao, Y., He, G., Cai, D. and Fan, M., Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device. Energy, 2020. 212: p. 118614.
  • 17. Yari, M., Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander. International Journal of Exergy, 2008. 5(3): p. 326-340.
  • 18. Takleh, H. R. and Zare, V., Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization. International Journal of Refrigeration, 2019. 101: p. 56-70.
  • 19. Cui, Z., Qian, S., & Yu, J., Performance assessment of an ejector enhanced dual temperature refrigeration cycle for domestic refrigerator application. Applied Thermal Engineering, 2020. 168: p. 114826.
  • 20. Chen, Q., Hwang, Y., Yan, G., and Yu, J., Theoretical investigation on the performance of an ejector enhanced refrigeration cycle using hydrocarbon mixture R290/R600a. Applied Thermal Engineering, 2020. 164: p. 114456.
  • 21. Bai, T., Yan, G., and Yu, J., Experimental investigation of an ejector-enhanced auto-cascade refrigeration system. Applied Thermal Engineering, 2018. 129: p. 792-801.
  • 22. Jeon, Y., Kim, D., Jung, J., Jang, D. S., and Kim, Y., Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a. Energy, 2018. 161: p. 1085-1095.
  • 23. Kotas, T. J., The exergy method of thermal plant analysis. Elsevier. 2013.
  • 24. Kornhauser, A. A., The use of an ejector as a refrigerant expander, International Refrigeration and Air Conditioning Conference. 1990. Purdue: p. 10-19.
  • 25. Sánchez, D., Cabello, R., Llopis, R., Arauzo, I., Catalán-Gil, J. and Torrella, E., Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017. 74: p. 269-282.
  • 26. Yadav, A. K. and Neeraj., Performance analysis of refrigerants R1234yf, R1234ze and R134a in ejector-based refrigeration cycle. International Journal of Air-Conditioning and Refrigeration, 2018. 26(03): p. 1850026.
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Servet Giray Hacıpaşaoğlu 0000-0001-6698-3562

İ.tekin Öztürk 0000-0003-2377-6429

Early Pub Date May 20, 2023
Publication Date April 15, 2023
Submission Date September 6, 2022
Acceptance Date March 19, 2023
Published in Issue Year 2023

Cite

APA Hacıpaşaoğlu, S. G., & Öztürk, İ. (2023). Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions. International Advanced Researches and Engineering Journal, 7(1), 23-34. https://doi.org/10.35860/iarej.1171637
AMA Hacıpaşaoğlu SG, Öztürk İ. Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions. Int. Adv. Res. Eng. J. April 2023;7(1):23-34. doi:10.35860/iarej.1171637
Chicago Hacıpaşaoğlu, Servet Giray, and İ.tekin Öztürk. “Energy and Exergy Analysis in the Ejector Expansion Refrigeration Cycle under Optimum Conditions”. International Advanced Researches and Engineering Journal 7, no. 1 (April 2023): 23-34. https://doi.org/10.35860/iarej.1171637.
EndNote Hacıpaşaoğlu SG, Öztürk İ (April 1, 2023) Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions. International Advanced Researches and Engineering Journal 7 1 23–34.
IEEE S. G. Hacıpaşaoğlu and İ. Öztürk, “Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions”, Int. Adv. Res. Eng. J., vol. 7, no. 1, pp. 23–34, 2023, doi: 10.35860/iarej.1171637.
ISNAD Hacıpaşaoğlu, Servet Giray - Öztürk, İ.tekin. “Energy and Exergy Analysis in the Ejector Expansion Refrigeration Cycle under Optimum Conditions”. International Advanced Researches and Engineering Journal 7/1 (April 2023), 23-34. https://doi.org/10.35860/iarej.1171637.
JAMA Hacıpaşaoğlu SG, Öztürk İ. Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions. Int. Adv. Res. Eng. J. 2023;7:23–34.
MLA Hacıpaşaoğlu, Servet Giray and İ.tekin Öztürk. “Energy and Exergy Analysis in the Ejector Expansion Refrigeration Cycle under Optimum Conditions”. International Advanced Researches and Engineering Journal, vol. 7, no. 1, 2023, pp. 23-34, doi:10.35860/iarej.1171637.
Vancouver Hacıpaşaoğlu SG, Öztürk İ. Energy and exergy analysis in the ejector expansion refrigeration cycle under optimum conditions. Int. Adv. Res. Eng. J. 2023;7(1):23-34.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.