Research Article
BibTex RIS Cite
Year 2023, , 97 - 102, 15.08.2023
https://doi.org/10.35860/iarej.1227443

Abstract

References

  • 1. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011. 63(4-5): p. 300-11.
  • 2. Baiguera, S. and D. Ribatti, Endothelialization approaches for viable engineered tissues. Angiogenesis, 2013. 16(1): p. 1-14.
  • 3. Yaralı, Z.B., G. Onak, and O. Karaman, Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids. Tissue Engineering and Regenerative Medicine, 2020. 17(5): p. 595-605.
  • 4. ÇEVİK, Z.B.Y., A. Ördek, and O. Karaman, Regulatory effects of laminin derived peptide on microtissue formation for tissue engineered scaffold-free constructs. 2022.
  • 5. Kapałczyńska, M., et al., 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. 2018. 14(4): p. 910-919.
  • 6. Mironov, V.A., et al., Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering. Polymers (Basel), 2022. 14(23).
  • 7. Anthon, S.G. and K.P. Valente, Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci, 2022. 23(23).
  • 8. Çevik, Z.B.Y., et al., Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues. 2022: p. 112615.
  • 9. Martins, A.M., et al., Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices. Biomaterials Advances, 2023. 144: p. 213227.
  • 10. Iorio, V., L.D. Troughton, and K.J. Hamill, Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New Rochelle), 2015. 4(4): p. 250-263.
  • 11. Freire, E., et al., Structure of laminin substrate modulates cellular signaling for neuritogenesis. J Cell Sci, 2002. 115(Pt 24): p. 4867-76.
  • 12. Sporn, M.B. and A.B. Roberts, Peptide growth factors are multifunctional. Nature, 1988. 332(6161): p. 217-9.
  • 13. Guldager Kring Rasmussen, D. and M.A. Karsdal, Chapter 29 - Laminins, in Biochemistry of Collagens, Laminins and Elastin, M.A. Karsdal, Editor. 2016, Academic Press. p. 163-196.
  • 14. Aumailley, M., The laminin family. Cell Adh Migr, 2013. 7(1): p. 48-55.
  • 15. Kikkawa, Y., et al., Laminin-111-derived peptides and cancer. Cell Adh Migr, 2013. 7(1): p. 150-256.
  • 16. Yu, X., G.P. Dillon, and R.B. Bellamkonda, A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng, 1999. 5(4): p. 291-304.
  • 17. Tate, C.C., et al., Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med, 2009. 3(3): p. 208-17.
  • 18. Taubenberger, A.V., et al., 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater, 2016. 36: p. 73-85.
  • 19. Kazemi, S., et al., IKVAV-linked cell membrane-spanning peptide treatment induces neuronal reactivation following spinal cord injury. 2015. 1(4):.
  • 20. Perera, T.H., X. Lu, and L.A. Smith Callahan, Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. 2020. 11(1): p. 15.
  • 21. Kibbey, M.C., et al., Laminin SIKVAV peptide-induced angiogenesis in vivo is potentiated by neutrophils. J Cell Physiol, 1994. 160(1): p. 185-93.
  • 22. Jung, J.P., J.V. Moyano, and J.H. Collier, Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb), 2011. 3(3): p. 185-96.
  • 23. Chen, S., et al., A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. Journal of Materials Chemistry B, 2015. 3(33): p. 6798-6804.
  • 24. Assal, Y., M. Mie, and E. Kobatake, The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures. Biomaterials, 2013. 34(13): p. 3315-23.
  • 25. Silva, G.A., et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004. 303(5662): p. 1352-5.
  • 26. Grant, D.S., et al., Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol, 1992. 153(3): p. 614-25.
  • 27. Amblard, M., et al., Methods and protocols of modern solid phase Peptide synthesis. Mol Biotechnol, 2006. 33(3): p. 239-54.
  • 28. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society, 1963. 85(14): p. 2149-2154.
  • 29. Karaman, O. and Z.B.J.T.E.R.J. YARALI, Determination of minimum serum concentration to develop scaffold free micro-tissue. 2018. 4(3): p. 145-151.
  • 30. Righi, M., et al., Peptide-based coatings for flexible implantable neural interfaces. Scientific Reports, 2018. 8(1): p. 502.
  • 31. Massia, S.P., M.M. Holecko, and G.R. Ehteshami, In vitro assessment of bioactive coatings for neural implant applications. J Biomed Mater Res A, 2004. 68(1): p. 177-86.
  • 32. Reis, E.M.D., et al., Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro. J Biomed Mater Res B Appl Biomater, 2018. 106(8): p. 2741-2749.
  • 33. Hosseinkhani, H., et al., Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. 2013. 4 8: p. 1229-35.
  • 34. Nomizu, M., et al., Structure-activity study of a laminin alpha 1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett, 1995. 365(2-3): p. 227-31.
  • 35. Kasai, S., et al., Multifunctional peptide fibrils for biomedical materials. Biopolymers, 2004. 76(1): p. 27-33.

The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue

Year 2023, , 97 - 102, 15.08.2023
https://doi.org/10.35860/iarej.1227443

Abstract

Tissue engineering research is recently a popular field but the vascularization process of existing methods limits the study area. Human Umbilical Vein Endothelial Cells (HUVEC) are essential cell models for vascularization study in vitro. Although studies about vascular biomaterial are mostly performed in traditional 2 Dimensional (D) cell culture, the system has some disadvantages. However, 3D scaffold-free microtissue can be used to overcome these disadvantages for the identification of the optimum concentration of biomaterials. IKVAV is an active unit of laminin which is an effective protein in the extracellular matrix. IKVAV may increase cell adhesion, proliferation, migration, and cellular differentiation. Since IKVAV directly affects endothelial cells, the definition of the optimum concentration of IKVAV is critically important for HUVEC growth and viability during vascularization. Thus, the study aimed identification of the optimal IKVAV peptide concentration for the production and viability of 3D HUVEC SFM. After peptide synthesis, 3D SFM was fabricated. 0.5 mM and 1 mM concentrations of IKVAV peptide were treated with SFM. The control group was incubated without any peptide concentration. Diameters and viabilities of SFMs were evaluated. 1 mM concentration showed the highest diameter and viability. The increasing concentrations may support HUVEC growth and viability so it may induce vascularization in vivo conditions.

References

  • 1. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011. 63(4-5): p. 300-11.
  • 2. Baiguera, S. and D. Ribatti, Endothelialization approaches for viable engineered tissues. Angiogenesis, 2013. 16(1): p. 1-14.
  • 3. Yaralı, Z.B., G. Onak, and O. Karaman, Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids. Tissue Engineering and Regenerative Medicine, 2020. 17(5): p. 595-605.
  • 4. ÇEVİK, Z.B.Y., A. Ördek, and O. Karaman, Regulatory effects of laminin derived peptide on microtissue formation for tissue engineered scaffold-free constructs. 2022.
  • 5. Kapałczyńska, M., et al., 2D and 3D cell cultures–a comparison of different types of cancer cell cultures. 2018. 14(4): p. 910-919.
  • 6. Mironov, V.A., et al., Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering. Polymers (Basel), 2022. 14(23).
  • 7. Anthon, S.G. and K.P. Valente, Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Int J Mol Sci, 2022. 23(23).
  • 8. Çevik, Z.B.Y., et al., Photobiomodulation therapy at red and near-infrared wavelengths for osteogenic differentiation in the scaffold-free microtissues. 2022: p. 112615.
  • 9. Martins, A.M., et al., Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices. Biomaterials Advances, 2023. 144: p. 213227.
  • 10. Iorio, V., L.D. Troughton, and K.J. Hamill, Laminins: Roles and Utility in Wound Repair. Adv Wound Care (New Rochelle), 2015. 4(4): p. 250-263.
  • 11. Freire, E., et al., Structure of laminin substrate modulates cellular signaling for neuritogenesis. J Cell Sci, 2002. 115(Pt 24): p. 4867-76.
  • 12. Sporn, M.B. and A.B. Roberts, Peptide growth factors are multifunctional. Nature, 1988. 332(6161): p. 217-9.
  • 13. Guldager Kring Rasmussen, D. and M.A. Karsdal, Chapter 29 - Laminins, in Biochemistry of Collagens, Laminins and Elastin, M.A. Karsdal, Editor. 2016, Academic Press. p. 163-196.
  • 14. Aumailley, M., The laminin family. Cell Adh Migr, 2013. 7(1): p. 48-55.
  • 15. Kikkawa, Y., et al., Laminin-111-derived peptides and cancer. Cell Adh Migr, 2013. 7(1): p. 150-256.
  • 16. Yu, X., G.P. Dillon, and R.B. Bellamkonda, A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension. Tissue Eng, 1999. 5(4): p. 291-304.
  • 17. Tate, C.C., et al., Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med, 2009. 3(3): p. 208-17.
  • 18. Taubenberger, A.V., et al., 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater, 2016. 36: p. 73-85.
  • 19. Kazemi, S., et al., IKVAV-linked cell membrane-spanning peptide treatment induces neuronal reactivation following spinal cord injury. 2015. 1(4):.
  • 20. Perera, T.H., X. Lu, and L.A. Smith Callahan, Effect of Laminin Derived Peptides IKVAV and LRE Tethered to Hyaluronic Acid on hiPSC Derived Neural Stem Cell Morphology, Attachment and Neurite Extension. 2020. 11(1): p. 15.
  • 21. Kibbey, M.C., et al., Laminin SIKVAV peptide-induced angiogenesis in vivo is potentiated by neutrophils. J Cell Physiol, 1994. 160(1): p. 185-93.
  • 22. Jung, J.P., J.V. Moyano, and J.H. Collier, Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb), 2011. 3(3): p. 185-96.
  • 23. Chen, S., et al., A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. Journal of Materials Chemistry B, 2015. 3(33): p. 6798-6804.
  • 24. Assal, Y., M. Mie, and E. Kobatake, The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures. Biomaterials, 2013. 34(13): p. 3315-23.
  • 25. Silva, G.A., et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004. 303(5662): p. 1352-5.
  • 26. Grant, D.S., et al., Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol, 1992. 153(3): p. 614-25.
  • 27. Amblard, M., et al., Methods and protocols of modern solid phase Peptide synthesis. Mol Biotechnol, 2006. 33(3): p. 239-54.
  • 28. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society, 1963. 85(14): p. 2149-2154.
  • 29. Karaman, O. and Z.B.J.T.E.R.J. YARALI, Determination of minimum serum concentration to develop scaffold free micro-tissue. 2018. 4(3): p. 145-151.
  • 30. Righi, M., et al., Peptide-based coatings for flexible implantable neural interfaces. Scientific Reports, 2018. 8(1): p. 502.
  • 31. Massia, S.P., M.M. Holecko, and G.R. Ehteshami, In vitro assessment of bioactive coatings for neural implant applications. J Biomed Mater Res A, 2004. 68(1): p. 177-86.
  • 32. Reis, E.M.D., et al., Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro. J Biomed Mater Res B Appl Biomater, 2018. 106(8): p. 2741-2749.
  • 33. Hosseinkhani, H., et al., Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. 2013. 4 8: p. 1229-35.
  • 34. Nomizu, M., et al., Structure-activity study of a laminin alpha 1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett, 1995. 365(2-3): p. 227-31.
  • 35. Kasai, S., et al., Multifunctional peptide fibrils for biomedical materials. Biopolymers, 2004. 76(1): p. 27-33.
There are 35 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering, Tissue Engineering
Journal Section Research Articles
Authors

Ziyşan Buse Yaralı Çevik 0000-0002-9371-6424

Betül Köken 0000-0002-6458-2228

Ozan Karaman 0000-0002-4175-4402

Early Pub Date August 27, 2023
Publication Date August 15, 2023
Submission Date December 31, 2022
Acceptance Date May 30, 2023
Published in Issue Year 2023

Cite

APA Yaralı Çevik, Z. B., Köken, B., & Karaman, O. (2023). The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue. International Advanced Researches and Engineering Journal, 7(2), 97-102. https://doi.org/10.35860/iarej.1227443
AMA Yaralı Çevik ZB, Köken B, Karaman O. The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue. Int. Adv. Res. Eng. J. August 2023;7(2):97-102. doi:10.35860/iarej.1227443
Chicago Yaralı Çevik, Ziyşan Buse, Betül Köken, and Ozan Karaman. “The Promoter Effect of Laminin-Derived IKVAV Peptide on Three Dimensional HUVEC Microtissue”. International Advanced Researches and Engineering Journal 7, no. 2 (August 2023): 97-102. https://doi.org/10.35860/iarej.1227443.
EndNote Yaralı Çevik ZB, Köken B, Karaman O (August 1, 2023) The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue. International Advanced Researches and Engineering Journal 7 2 97–102.
IEEE Z. B. Yaralı Çevik, B. Köken, and O. Karaman, “The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue”, Int. Adv. Res. Eng. J., vol. 7, no. 2, pp. 97–102, 2023, doi: 10.35860/iarej.1227443.
ISNAD Yaralı Çevik, Ziyşan Buse et al. “The Promoter Effect of Laminin-Derived IKVAV Peptide on Three Dimensional HUVEC Microtissue”. International Advanced Researches and Engineering Journal 7/2 (August 2023), 97-102. https://doi.org/10.35860/iarej.1227443.
JAMA Yaralı Çevik ZB, Köken B, Karaman O. The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue. Int. Adv. Res. Eng. J. 2023;7:97–102.
MLA Yaralı Çevik, Ziyşan Buse et al. “The Promoter Effect of Laminin-Derived IKVAV Peptide on Three Dimensional HUVEC Microtissue”. International Advanced Researches and Engineering Journal, vol. 7, no. 2, 2023, pp. 97-102, doi:10.35860/iarej.1227443.
Vancouver Yaralı Çevik ZB, Köken B, Karaman O. The promoter effect of laminin-derived IKVAV peptide on three dimensional HUVEC microtissue. Int. Adv. Res. Eng. J. 2023;7(2):97-102.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.