In recent times, there has been increasing interest in utilizing EEG-based techniques for studying Major Depressive Disorder as a dynamic method. Although it is frequently used for identifying depression, the method is still difficult to interpret. The conventional treatment of MDD involves medications such as Selective Serotonin Reuptake Inhibitors, which often have adverse effects. On the other hand, the use of dimethyltryptamine to stimulate brain activity in regions where MDD patients show lower activity has demonstrated promising results. This study analyzed resting-state EEG signals from MDD patients, DMT users, and healthy controls to evaluate and validated a computer-aided approach. The brain activity of DMT users was recorded and compared with MDD individuals and healthy controls. Using Welch's method, the power of several frequency bands was analyzed from the EEG dataset for comparison and diagnosis. The extracted EEG data underwent noise removal and feature extraction. The features from all controls were concatenated to form a data matrix. Furthermore, the data matrix was standardized using the Z-score standardization method. The classifier model logistic regression was employed to train and test the extracted features. The results of the investigations have demonstrated the most important features, such as signal power of the EEG data from the frontal, temporal, parietal, and occipital brain areas, to be significant.
1. Depressive disorder (depression). [2023 March 31]; Available from https://www.who.int/news-room/fact-sheets/detail/depression.
2. Park K, Jaekal E, Yoon S, Lee S-H and Choi K-H, Diagnostic Utility and Psychometric Properties of the Beck Depression Inventory-II Among Korean Adults. Frontiers in Psychology, 2020. 10: 2934.
3. Gu S, Wang F, Cao C, Wu E, Tang Y-Y and Huang JH, An Integrative Way for Studying Neural Basis of Basic Emotions With fMRI. Frontiers in Neuroscience, 2019. 13: 628.
4. Mayberg, H. S., Frontal lobe dysfunction in secondary depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 1994. 6(4): p. 428–442.
5. Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L. T. J., Erritzoe, D., Muthukumaraswamy, S., Ashton, M., Bendrioua, A., Kaur, O., Turton, S., Nour, M. M., Day, C. M., Leech, R., Nutt, D. J., and Carhart-Harris, R. L., Neural correlates of the DMT experience assessed with multivariate EEG. Scientific Reports, 2019. 9(1): 16324.
6. Duan L, Duan H, Qiao Y, Sha S, Qi S, Zhang X, Huang J, Huang X and Wang C, Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals. Frontiers in Human Neuroscience, 2020. 14: 284.
8. Tariq, M., Trivailo, P. M., & Simic, M., EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience, 2018. 12: 312.
9. Liu, J., Meng, H., Nandi, A., & Li, M., Emotion detection from EEG recordings in 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery 2016. ICNC-FSKD: p. 1722–1727.
10. Mumtaz, W., Xia, L., Ali, S. S. A., Yasin, M. A. M., Hussain, M., and Malik, A. S., Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomedical Signal Processing and Control, 2017. 31: p. 108–115.
11. Pallavicini, C., Cavanna, F., Zambelan, F., de la Fuente, L. A., Arias, M., Romero, C., Carhart-Harris, R., Timmermann, C., and Tagliazucchi, E., Neural and subjective effects of inhaled DMT in natural settings [Data set]. Zenodo 2020. Available from https://doi.org/10.5281/zenodo.3992359
12. Ribas, V. R., Ribas, R. G., Nóbrega, J. de A., da Nóbrega, M. V., Espécie, J. A. de A., Calafange, M. T., Calafange, C. de O. M., and Martins, H. A. de L., Pattern of anxiety, insecurity, fear, panic and/or phobia observed by quantitative electroencephalography (QEEG). Dementia & Neuropsychologia, 2018. 12(3): p. 264–271.
13. Zhao, Li, and Yang He., Power Spectrum Estimation of the Welch Method Based on Imagery EEG. Applied Mechanics and Materials, 2013. 278-280: p. 1260–1264.
14. Pallavicini, C., Cavanna, F., Zamberlan, F., de la Fuente, L. A., Perl, Y. S., Arias, M., Romero, C., Carhart-Harris, R., Timmermann, C., and Tagliazucchi, E., Neural and subjective effects of inhaled DMT in natural settings. bioRxiv, 2020. Available from
https://doi.org/10.1101/2020.08.19.258145
15. Pandya M, Altinay M, Malone DA Jr, and Anand A., Where in the brain is depression?. Current Psychiatry Reports, 2012. 14(6): p. 634-642.
16. Xiong, Q., Zhang, X., Wang, W.-F., and Gu, Y., A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI. Computational and Mathematical Methods in Medicine, 2020: 9812019.
1. Depressive disorder (depression). [2023 March 31]; Available from https://www.who.int/news-room/fact-sheets/detail/depression.
2. Park K, Jaekal E, Yoon S, Lee S-H and Choi K-H, Diagnostic Utility and Psychometric Properties of the Beck Depression Inventory-II Among Korean Adults. Frontiers in Psychology, 2020. 10: 2934.
3. Gu S, Wang F, Cao C, Wu E, Tang Y-Y and Huang JH, An Integrative Way for Studying Neural Basis of Basic Emotions With fMRI. Frontiers in Neuroscience, 2019. 13: 628.
4. Mayberg, H. S., Frontal lobe dysfunction in secondary depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 1994. 6(4): p. 428–442.
5. Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L. T. J., Erritzoe, D., Muthukumaraswamy, S., Ashton, M., Bendrioua, A., Kaur, O., Turton, S., Nour, M. M., Day, C. M., Leech, R., Nutt, D. J., and Carhart-Harris, R. L., Neural correlates of the DMT experience assessed with multivariate EEG. Scientific Reports, 2019. 9(1): 16324.
6. Duan L, Duan H, Qiao Y, Sha S, Qi S, Zhang X, Huang J, Huang X and Wang C, Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals. Frontiers in Human Neuroscience, 2020. 14: 284.
8. Tariq, M., Trivailo, P. M., & Simic, M., EEG-based BCI control schemes for lower-limb assistive-robots. Frontiers in Human Neuroscience, 2018. 12: 312.
9. Liu, J., Meng, H., Nandi, A., & Li, M., Emotion detection from EEG recordings in 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery 2016. ICNC-FSKD: p. 1722–1727.
10. Mumtaz, W., Xia, L., Ali, S. S. A., Yasin, M. A. M., Hussain, M., and Malik, A. S., Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomedical Signal Processing and Control, 2017. 31: p. 108–115.
11. Pallavicini, C., Cavanna, F., Zambelan, F., de la Fuente, L. A., Arias, M., Romero, C., Carhart-Harris, R., Timmermann, C., and Tagliazucchi, E., Neural and subjective effects of inhaled DMT in natural settings [Data set]. Zenodo 2020. Available from https://doi.org/10.5281/zenodo.3992359
12. Ribas, V. R., Ribas, R. G., Nóbrega, J. de A., da Nóbrega, M. V., Espécie, J. A. de A., Calafange, M. T., Calafange, C. de O. M., and Martins, H. A. de L., Pattern of anxiety, insecurity, fear, panic and/or phobia observed by quantitative electroencephalography (QEEG). Dementia & Neuropsychologia, 2018. 12(3): p. 264–271.
13. Zhao, Li, and Yang He., Power Spectrum Estimation of the Welch Method Based on Imagery EEG. Applied Mechanics and Materials, 2013. 278-280: p. 1260–1264.
14. Pallavicini, C., Cavanna, F., Zamberlan, F., de la Fuente, L. A., Perl, Y. S., Arias, M., Romero, C., Carhart-Harris, R., Timmermann, C., and Tagliazucchi, E., Neural and subjective effects of inhaled DMT in natural settings. bioRxiv, 2020. Available from
https://doi.org/10.1101/2020.08.19.258145
15. Pandya M, Altinay M, Malone DA Jr, and Anand A., Where in the brain is depression?. Current Psychiatry Reports, 2012. 14(6): p. 634-642.
16. Xiong, Q., Zhang, X., Wang, W.-F., and Gu, Y., A Parallel Algorithm Framework for Feature Extraction of EEG Signals on MPI. Computational and Mathematical Methods in Medicine, 2020: 9812019.
Jahan, S. (2023). Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine. International Advanced Researches and Engineering Journal, 7(2), 90-96. https://doi.org/10.35860/iarej.1231288
AMA
Jahan S. Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine. Int. Adv. Res. Eng. J. August 2023;7(2):90-96. doi:10.35860/iarej.1231288
Chicago
Jahan, Sushmit. “Major Depressive Disorder Diagnosis from Electroencephalogram Data and Potential Treatment With Dimethyltryptamine”. International Advanced Researches and Engineering Journal 7, no. 2 (August 2023): 90-96. https://doi.org/10.35860/iarej.1231288.
EndNote
Jahan S (August 1, 2023) Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine. International Advanced Researches and Engineering Journal 7 2 90–96.
IEEE
S. Jahan, “Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine”, Int. Adv. Res. Eng. J., vol. 7, no. 2, pp. 90–96, 2023, doi: 10.35860/iarej.1231288.
ISNAD
Jahan, Sushmit. “Major Depressive Disorder Diagnosis from Electroencephalogram Data and Potential Treatment With Dimethyltryptamine”. International Advanced Researches and Engineering Journal 7/2 (August 2023), 90-96. https://doi.org/10.35860/iarej.1231288.
JAMA
Jahan S. Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine. Int. Adv. Res. Eng. J. 2023;7:90–96.
MLA
Jahan, Sushmit. “Major Depressive Disorder Diagnosis from Electroencephalogram Data and Potential Treatment With Dimethyltryptamine”. International Advanced Researches and Engineering Journal, vol. 7, no. 2, 2023, pp. 90-96, doi:10.35860/iarej.1231288.
Vancouver
Jahan S. Major depressive disorder diagnosis from electroencephalogram data and potential treatment with dimethyltryptamine. Int. Adv. Res. Eng. J. 2023;7(2):90-6.