Research Article
BibTex RIS Cite

An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing

Year 2024, , 9 - 19, 20.04.2024
https://doi.org/10.35860/iarej.1369209

Abstract

In case of fractures, cracks or damage to bone tissues, it is important to use casts, fixatives and protective equipment. Especially in cases where long-term use of casts is required, soft tissue wounds may occur in the human body due to their moisture and airtight structure. For this reason, the use of casts with custom designs, breathable materials, and high mechanical properties has become widespread in recent years. This study focuses on the design of custom arm casts using advanced additive manufacturing technologies and lightweight materials. By utilizing Voronoi lattice structures and hexagonal surface meshes, optimized designs adaptable to additive manufacturing were obtained from a standard arm cast. All cast geometries were investigated under 196 N and 380 N forces. Then, the impact of a 100 g and 1000 g concrete piece with a speed of 12.5 m/s on the arm cast was investigated. As a result of the analyzes, stress, impact plate velocities, deformation, strain and deformation energy were evaluated. The results showed that the designed arm casts have up to 60% better impact strength compared to conventional arm casts. Based on the findings of this study, the use of custom arm casts with optimized lattice structures designed for additive manufacturing will demonstrate high performance.

References

  • 1. Kastenberger, T., Kaiser, P., Schmidle, G., Schwendinger, P., Gabl, M., and Arora, R., Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Archives of Orthopaedic and Trauma Surgery, 2020. 140: p. 623-638.
  • 2. Fang, Y., Yang, X., Lin, Y., Shi, J., Prominski, A., Clayton, C., and Tian, B. Dissecting biological and synthetic soft–hard interfaces for tissue-like systems. Chemical Reviews, 2021. 122(5): p. 5233-5276.
  • 3. Root, S. E., Sanchez, V., Tracz, J. A., Preston, D. J., Zvi, Y. S., Wang, K., and Whitesides, G. M., An Expanding Foam‐Fabric Orthopedic Cast. Advanced Materials Technologies, 2022. 7(9): p. 2101563.
  • 4. Craig, J., Clarke, S., and Moore, P, Orthopaedic and Trauma Nursing: An Evidence‐based Approach to Musculoskeletal Care. Principles of Fracture Management, 2023. p. 240-255.
  • 5. Leixnering, M., Rosenauer, R., Pezzei, C., Jurkowitsch, J., Beer, T., Keuchel, T., and Quadlbauer, S, Indications, surgical approach, reduction, and stabilization techniques of distal radius fractures. Archives of Orthopaedic and Trauma Surgery, 2020. 140: p. 611-621.
  • 6. Dib, G., Maluta, T., Cengarle, M., Bernasconi, A., Marconato, G., Corain, M., and Magnan, B, Short arm cast is as effective as long arm cast in maintaining distal radius fracture reduction: Results of the SLA-VER noninferiority trial. World Journal of Orthopedics, 2022. 13(9): p. 802.
  • 7. Sabeh, K., Aiyer, A., Summers, S., and Hennrikus, W., Cast application techniques for common pediatric injuries: A review. Current Orthopaedic Practice, 2020. 31(3): p. 277-287.
  • 8. Farrell, S., Schaeffer, E. K., and Mulpuri, K., Recommendations for the care of pediatric orthopaedic patients during the COVID pandemic. The Journal of the American Academy of Orthopaedic Surgeons, 2020. 28(11): p. 477– 486.
  • 9. Byrchak, V., Duma, Z., and Aravitska, M., Effectiveness of the active physical therapy in restoring wrist and hand functional ability in patients with immobility-induced contracture of the wrist joint complicated by median nerve entrapment owing to distal forearm fracture. Journal of Physical Education and Sport, 2020. 20(6): p. 3599-3606.
  • 10. Marin, E., Boschetto, F., and Pezzotti, G., Biomaterials and biocompatibility: An historical overview. Journal of Biomedical Materials Research Part A, 2020. 108(8): p. 1617-1633.
  • 11. Rezaei, R., The Easy Wrap Orthopedic Cast, Rochester Institute of Technology, 2017.
  • 12. Varivodov, V. N., Kovalev, D. I., Zhulikov, S. S., Golubev, D. V., Romanov, V. A., and Mirzabekyan, G. Z., Technological aspects of the use of cast polymer insulation for high-voltage switchgear and busbars. Power Technology and Engineering, 2021. 54: p. 915-922.
  • 13. Paterson, A. M., Bibb, R., Campbell, R. I., and Bingham, G., Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 2015. 21(3): p. 230-243.
  • 14. Henkel, J., Woodruff, M. A., Epari, D. R., Steck, R., Glatt, V., Dickinson, I. C., and Hutmacher, D. W., Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone research, 2013. 1(1): p. 216-248.
  • 15. Iftekhar, A., Standard handbook of biomedical engineering and design. Biomedical composites, 2004. p. 1-17.
  • 16. Edwards, M. A, Guide to Modelling in Clay and Wax: And for Terra Cotta, Bronze and Silver Chasing and Embossing, Carving in Marble and Alabaster, Moulding and Casting in Cast-Of-Paris or Sculptural Art Made Easy for Beginners. Read Books Ltd, 2016.
  • 17. Maji, P., and Naskar, K., Styrenic block copolymer‐based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure–property relationships—A review, Journal of Applied Polymer Science, 2022. 139(39): p. 52942.
  • 18. Gogoi, R., Niyogi, U. K., Alam, M. S., and Mehra, D. S, Study of effect of NCO/OH molar ratio and molecular weight of polyol on the physico-mechanical properties of polyurethane cast. World Applied Sciences Journal, 2013. 21(2): p. 276-283.
  • 19. Parmar, A. J., Tyagi, S. K., Dabas, V. S., Mistry, J. N., Jhala, S. K., Suthar, D. N., and Bhatti, I. M., Assessment of the physical and mechanical properties of cast of Paris bandage cast used as a splinting and casting materials. Veterinary World, 2014. 7(12): p. 1123-1126.
  • 20. Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Gibson, I., Rosen, D., and Khorasani, M., Materials for additive manufacturing. Additive Manufacturing Technologies, 2021. p. 379-428.
  • 21. Hasanov, S., Alkunte, S., Rajeshirke, M., Gupta, A., Huseynov, O., Fidan, I., and Rennie, A., Review on additive manufacturing of multi-material parts: progress and challenges. Journal of Manufacturing and Materials Processing, 2021. 6(1): p. 4.
  • 22. Pal, A. K., Mohanty, A. K., and Misra, M., Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Advances, 2021. 11(58): p. 36398-36438.
  • 23. Banga, H. K., Kumar, R., Channi, H. K., and Kaur, S., Parametric design and stress analysis of 3D printed prosthetic finger. In Innovative Processes and Materials in Additive Manufacturing, 2023. p. 57-80.
  • 24. Zolfagharian, A., Gregory, T. M., Bodaghi, M., Gharaie, S., and Fay, P., Patient-specific 3D-printed splint for mallet finger injury. International Journal of Bioprinting, 2020. 6(2): p. 259.
  • 25. Peng, S., Guo, Q., Thirunavukkarasu, N., Zheng, Y., Wang, Z., Zheng, L., and Weng, Z., Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chemical Engineering Journal, 2022. 439: p. 135593.
  • 26. Richa, S., Bhaskar, J., and Kumar, A., A Review on: 3D Printed Orthopaedic Cast for Improved Forearm Fracture Rehabilitation. International Journal for Research in Applied Science & Engineering Technology, 2021. 9(11): p. 66-72.
  • 27. Lei, H. Y., Li, J. R., Xu, Z. J., and Wang, Q. H., Parametric design of Voronoi-based lattice porous structures. Materials and Design, 2020. 191: p. 108607.
  • 28. Bukenberger, D. R., Buchin, K., and Botsch, M., Constructing L∞ Voronoi Diagrams in 2D and 3D. In Computer Graphics Forum, 2022. 41(5): p. 135-147.
  • 29. Shirley, E. D., Maguire, K. J., Mantica, A. L., and Kruse, R. W., Alternatives to traditional cast immobilization in pediatric patients. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2020. 28(1): p. 20-27.
  • 30. Graham, J., Wang, M., Frizzell, K., Watkins, C., Beredjiklian, P., and Rivlin, M., Conventional vs 3-dimensional printed cast wear comfort. Hand, 2020. 15(3): p. 388-392.
  • 31. Williams, R. J., Exploring thermal discomfort amongst lower-limb prosthesis wearers. UCL University College London, 2020.
  • 32. Craig, J., Clarke, S., and Moore, P., Orthopaedic and Trauma Nursing: An Evidence‐based Approach to Musculoskeletal Care. Principles of Fracture Management, 2023. p. 240-255.
  • 33. Gao, Y., Yu, L., Yeo, J. C., and Lim, C. T., Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 2020. 32(15): p. 1902133.
  • 34. Patel, A. H., Baxi, N. J., and Gurrala, P. K., A study on triply periodic minimal surfaces: A case study. Materials Today: Proceedings, 2022. 62: p. 7334-7340.
  • 35. Satkar, A. R., Mache, A., and Kulkarni, A., Numerical investigation on perforation resistance of glass-carbon/epoxy hybrid composite laminate under ballistic impact. Materials Today: Proceedings, 2022. 59: p. 734-741.
  • 36. Aslam, M. A., Ke, Z., Rayhan, S. B., Faizan, M., and Bello, I. M., An investigation of soft impacts on selected aerospace grade alloys based on Johnson-Cook Material Model. In Journal of Physics: Conference Series, 2020. 1707(1): p. 012008.
  • 37. Pinto, V.C., Ramos, T., Alves, S., Xavier, J., Tavares, P., Moreira, P.M.G.P. and Guedes, R.M., Comparative failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites thin films. Procedia Engineering, 2015. 114: p.635-642.
  • 38. Tanabi̇, H., Investigation of the temperature effect on the mechanical properties of 3D printed composites. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 188-93.
  • 39. Bolat, ç., And ergene, b., An experimental effort on impact properties of polylactic acid samples manufactured by additive manufacturing. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2023. 11(2): p. 998-1013.
  • 40. Mian, S.H., Umer, U., Moiduddin, K. and Alkhalefah, H., Finite Element Analysis of Upper Limb Splint Designs and Materials for 3D Printing. Polymers, 2023. 15(14): p. 2993.
Year 2024, , 9 - 19, 20.04.2024
https://doi.org/10.35860/iarej.1369209

Abstract

References

  • 1. Kastenberger, T., Kaiser, P., Schmidle, G., Schwendinger, P., Gabl, M., and Arora, R., Arthroscopic assisted treatment of distal radius fractures and concomitant injuries. Archives of Orthopaedic and Trauma Surgery, 2020. 140: p. 623-638.
  • 2. Fang, Y., Yang, X., Lin, Y., Shi, J., Prominski, A., Clayton, C., and Tian, B. Dissecting biological and synthetic soft–hard interfaces for tissue-like systems. Chemical Reviews, 2021. 122(5): p. 5233-5276.
  • 3. Root, S. E., Sanchez, V., Tracz, J. A., Preston, D. J., Zvi, Y. S., Wang, K., and Whitesides, G. M., An Expanding Foam‐Fabric Orthopedic Cast. Advanced Materials Technologies, 2022. 7(9): p. 2101563.
  • 4. Craig, J., Clarke, S., and Moore, P, Orthopaedic and Trauma Nursing: An Evidence‐based Approach to Musculoskeletal Care. Principles of Fracture Management, 2023. p. 240-255.
  • 5. Leixnering, M., Rosenauer, R., Pezzei, C., Jurkowitsch, J., Beer, T., Keuchel, T., and Quadlbauer, S, Indications, surgical approach, reduction, and stabilization techniques of distal radius fractures. Archives of Orthopaedic and Trauma Surgery, 2020. 140: p. 611-621.
  • 6. Dib, G., Maluta, T., Cengarle, M., Bernasconi, A., Marconato, G., Corain, M., and Magnan, B, Short arm cast is as effective as long arm cast in maintaining distal radius fracture reduction: Results of the SLA-VER noninferiority trial. World Journal of Orthopedics, 2022. 13(9): p. 802.
  • 7. Sabeh, K., Aiyer, A., Summers, S., and Hennrikus, W., Cast application techniques for common pediatric injuries: A review. Current Orthopaedic Practice, 2020. 31(3): p. 277-287.
  • 8. Farrell, S., Schaeffer, E. K., and Mulpuri, K., Recommendations for the care of pediatric orthopaedic patients during the COVID pandemic. The Journal of the American Academy of Orthopaedic Surgeons, 2020. 28(11): p. 477– 486.
  • 9. Byrchak, V., Duma, Z., and Aravitska, M., Effectiveness of the active physical therapy in restoring wrist and hand functional ability in patients with immobility-induced contracture of the wrist joint complicated by median nerve entrapment owing to distal forearm fracture. Journal of Physical Education and Sport, 2020. 20(6): p. 3599-3606.
  • 10. Marin, E., Boschetto, F., and Pezzotti, G., Biomaterials and biocompatibility: An historical overview. Journal of Biomedical Materials Research Part A, 2020. 108(8): p. 1617-1633.
  • 11. Rezaei, R., The Easy Wrap Orthopedic Cast, Rochester Institute of Technology, 2017.
  • 12. Varivodov, V. N., Kovalev, D. I., Zhulikov, S. S., Golubev, D. V., Romanov, V. A., and Mirzabekyan, G. Z., Technological aspects of the use of cast polymer insulation for high-voltage switchgear and busbars. Power Technology and Engineering, 2021. 54: p. 915-922.
  • 13. Paterson, A. M., Bibb, R., Campbell, R. I., and Bingham, G., Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 2015. 21(3): p. 230-243.
  • 14. Henkel, J., Woodruff, M. A., Epari, D. R., Steck, R., Glatt, V., Dickinson, I. C., and Hutmacher, D. W., Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone research, 2013. 1(1): p. 216-248.
  • 15. Iftekhar, A., Standard handbook of biomedical engineering and design. Biomedical composites, 2004. p. 1-17.
  • 16. Edwards, M. A, Guide to Modelling in Clay and Wax: And for Terra Cotta, Bronze and Silver Chasing and Embossing, Carving in Marble and Alabaster, Moulding and Casting in Cast-Of-Paris or Sculptural Art Made Easy for Beginners. Read Books Ltd, 2016.
  • 17. Maji, P., and Naskar, K., Styrenic block copolymer‐based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure–property relationships—A review, Journal of Applied Polymer Science, 2022. 139(39): p. 52942.
  • 18. Gogoi, R., Niyogi, U. K., Alam, M. S., and Mehra, D. S, Study of effect of NCO/OH molar ratio and molecular weight of polyol on the physico-mechanical properties of polyurethane cast. World Applied Sciences Journal, 2013. 21(2): p. 276-283.
  • 19. Parmar, A. J., Tyagi, S. K., Dabas, V. S., Mistry, J. N., Jhala, S. K., Suthar, D. N., and Bhatti, I. M., Assessment of the physical and mechanical properties of cast of Paris bandage cast used as a splinting and casting materials. Veterinary World, 2014. 7(12): p. 1123-1126.
  • 20. Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Gibson, I., Rosen, D., and Khorasani, M., Materials for additive manufacturing. Additive Manufacturing Technologies, 2021. p. 379-428.
  • 21. Hasanov, S., Alkunte, S., Rajeshirke, M., Gupta, A., Huseynov, O., Fidan, I., and Rennie, A., Review on additive manufacturing of multi-material parts: progress and challenges. Journal of Manufacturing and Materials Processing, 2021. 6(1): p. 4.
  • 22. Pal, A. K., Mohanty, A. K., and Misra, M., Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Advances, 2021. 11(58): p. 36398-36438.
  • 23. Banga, H. K., Kumar, R., Channi, H. K., and Kaur, S., Parametric design and stress analysis of 3D printed prosthetic finger. In Innovative Processes and Materials in Additive Manufacturing, 2023. p. 57-80.
  • 24. Zolfagharian, A., Gregory, T. M., Bodaghi, M., Gharaie, S., and Fay, P., Patient-specific 3D-printed splint for mallet finger injury. International Journal of Bioprinting, 2020. 6(2): p. 259.
  • 25. Peng, S., Guo, Q., Thirunavukkarasu, N., Zheng, Y., Wang, Z., Zheng, L., and Weng, Z., Tailoring of photocurable ionogel toward high resilience and low hysteresis 3D printed versatile porous flexible sensor. Chemical Engineering Journal, 2022. 439: p. 135593.
  • 26. Richa, S., Bhaskar, J., and Kumar, A., A Review on: 3D Printed Orthopaedic Cast for Improved Forearm Fracture Rehabilitation. International Journal for Research in Applied Science & Engineering Technology, 2021. 9(11): p. 66-72.
  • 27. Lei, H. Y., Li, J. R., Xu, Z. J., and Wang, Q. H., Parametric design of Voronoi-based lattice porous structures. Materials and Design, 2020. 191: p. 108607.
  • 28. Bukenberger, D. R., Buchin, K., and Botsch, M., Constructing L∞ Voronoi Diagrams in 2D and 3D. In Computer Graphics Forum, 2022. 41(5): p. 135-147.
  • 29. Shirley, E. D., Maguire, K. J., Mantica, A. L., and Kruse, R. W., Alternatives to traditional cast immobilization in pediatric patients. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2020. 28(1): p. 20-27.
  • 30. Graham, J., Wang, M., Frizzell, K., Watkins, C., Beredjiklian, P., and Rivlin, M., Conventional vs 3-dimensional printed cast wear comfort. Hand, 2020. 15(3): p. 388-392.
  • 31. Williams, R. J., Exploring thermal discomfort amongst lower-limb prosthesis wearers. UCL University College London, 2020.
  • 32. Craig, J., Clarke, S., and Moore, P., Orthopaedic and Trauma Nursing: An Evidence‐based Approach to Musculoskeletal Care. Principles of Fracture Management, 2023. p. 240-255.
  • 33. Gao, Y., Yu, L., Yeo, J. C., and Lim, C. T., Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 2020. 32(15): p. 1902133.
  • 34. Patel, A. H., Baxi, N. J., and Gurrala, P. K., A study on triply periodic minimal surfaces: A case study. Materials Today: Proceedings, 2022. 62: p. 7334-7340.
  • 35. Satkar, A. R., Mache, A., and Kulkarni, A., Numerical investigation on perforation resistance of glass-carbon/epoxy hybrid composite laminate under ballistic impact. Materials Today: Proceedings, 2022. 59: p. 734-741.
  • 36. Aslam, M. A., Ke, Z., Rayhan, S. B., Faizan, M., and Bello, I. M., An investigation of soft impacts on selected aerospace grade alloys based on Johnson-Cook Material Model. In Journal of Physics: Conference Series, 2020. 1707(1): p. 012008.
  • 37. Pinto, V.C., Ramos, T., Alves, S., Xavier, J., Tavares, P., Moreira, P.M.G.P. and Guedes, R.M., Comparative failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites thin films. Procedia Engineering, 2015. 114: p.635-642.
  • 38. Tanabi̇, H., Investigation of the temperature effect on the mechanical properties of 3D printed composites. International Advanced Researches and Engineering Journal, 2021. 5(2): p. 188-93.
  • 39. Bolat, ç., And ergene, b., An experimental effort on impact properties of polylactic acid samples manufactured by additive manufacturing. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2023. 11(2): p. 998-1013.
  • 40. Mian, S.H., Umer, U., Moiduddin, K. and Alkhalefah, H., Finite Element Analysis of Upper Limb Splint Designs and Materials for 3D Printing. Polymers, 2023. 15(14): p. 2993.
There are 40 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering (Other), Solid Mechanics, Optimization Techniques in Mechanical Engineering, Material Design and Behaviors, Composite and Hybrid Materials, Manufacturing Processes and Technologies (Excl. Textiles), Optimization in Manufacturing
Journal Section Research Articles
Authors

Mamoun Alshihabi 0000-0002-9766-4465

Mevlüt Yunus Kayacan 0000-0003-3557-9537

Early Pub Date June 5, 2024
Publication Date April 20, 2024
Submission Date September 30, 2023
Acceptance Date March 9, 2024
Published in Issue Year 2024

Cite

APA Alshihabi, M., & Kayacan, M. Y. (2024). An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing. International Advanced Researches and Engineering Journal, 8(1), 9-19. https://doi.org/10.35860/iarej.1369209
AMA Alshihabi M, Kayacan MY. An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing. Int. Adv. Res. Eng. J. April 2024;8(1):9-19. doi:10.35860/iarej.1369209
Chicago Alshihabi, Mamoun, and Mevlüt Yunus Kayacan. “An Optimization Study Focused on Lattice Structured Custom Arm Casts for Fractured Bones Inspiring Additive Manufacturing”. International Advanced Researches and Engineering Journal 8, no. 1 (April 2024): 9-19. https://doi.org/10.35860/iarej.1369209.
EndNote Alshihabi M, Kayacan MY (April 1, 2024) An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing. International Advanced Researches and Engineering Journal 8 1 9–19.
IEEE M. Alshihabi and M. Y. Kayacan, “An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing”, Int. Adv. Res. Eng. J., vol. 8, no. 1, pp. 9–19, 2024, doi: 10.35860/iarej.1369209.
ISNAD Alshihabi, Mamoun - Kayacan, Mevlüt Yunus. “An Optimization Study Focused on Lattice Structured Custom Arm Casts for Fractured Bones Inspiring Additive Manufacturing”. International Advanced Researches and Engineering Journal 8/1 (April 2024), 9-19. https://doi.org/10.35860/iarej.1369209.
JAMA Alshihabi M, Kayacan MY. An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing. Int. Adv. Res. Eng. J. 2024;8:9–19.
MLA Alshihabi, Mamoun and Mevlüt Yunus Kayacan. “An Optimization Study Focused on Lattice Structured Custom Arm Casts for Fractured Bones Inspiring Additive Manufacturing”. International Advanced Researches and Engineering Journal, vol. 8, no. 1, 2024, pp. 9-19, doi:10.35860/iarej.1369209.
Vancouver Alshihabi M, Kayacan MY. An optimization study focused on lattice structured custom arm casts for fractured bones inspiring additive manufacturing. Int. Adv. Res. Eng. J. 2024;8(1):9-19.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.