Research Article
BibTex RIS Cite
Year 2019, , 93 - 97, 15.08.2019
https://doi.org/10.35860/iarej.420633

Abstract

References

  • 1. Mekonnen, T., P. Mussone, H. Khalil, D. Bressler, Progress in bio-based plastics and plasticizing modifications. Journal of Material Chemistry A, 2013. 43(1): p.13379-13398.
  • 2. Zarate-Ramirez, L.S., A. Romero, I. Martinez, C. Bengoeche, P. Partal, A. Guerrero, Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food and Bioproducts Processing, 2014. 92: p.20–29.
  • 3. Philp, J.C., R.J. Ritchie, K. Guy, Biobased plastics in a bioeconomy. Trends in Biotechnology, 2013. 31(2): p.65-67.
  • 4. Barker, T., In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. 2010, USA: Cambridge University Press.
  • 5. El Kadi, S., Bioplastic production form inexpensive sources bacterial biosynthesis, cultivation system, production and biodegrability. 2010, USA: VDM Publishing House.
  • 6. Peelman, N., P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F.V. Impe, F. Devlieghere, Application of bioplastics for food packaging. Trends in Food Science and Technology, 2013. 32(2):p. 128-141.
  • 7. Mirel. [cited 2017 03 March]; Available from: https://pdfs.semanticscholar.org/fa36/d6c497ea7d4d9830682a671ee11cd2746d30.pdf
  • 8. Karana, E., Characterization of ‘natural’ and ‘high-quality’ materials to improve perception of bioplastics. Journal of Cleaner Production, 2012. 37: p. 316-325.
  • 9. Sarasa, J., J. M. Gracia, C. Javierre, Study of the biodisintegration of a bioplastic material waste. Bioresource Technology, 2008. 100(15): p.3764-3768
  • 10. Luengo, J. M., B. Garcia, A. Sandoval, G. Naharro, E. R. Olivera, Bioplastics from microorganisms. Current Opinion in Microbiology, 2003. 6(3): p.251–260.
  • 11. Alvarez-Chavez, C.R., S. Edward, R. Moure-Eraso, K. Geiser, Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of Cleaner Production, 2012. 23(1): p.47–56.
  • 12. Schulze, C., M. Juraschek, C. Herrmann, S. Thiede, Energy Analysis of Bioplastics Processing. Procedia CIRP 2017. 61: p. 600-605.
  • 13. Kaith, B.S., R. Jindal, A.K. Jana, M. Maiti, Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers – Evaluation of thermal, physico-chemical and mechanical properties. Bioresource Technology, 2009. 101(17): p. 6843–6851.
  • 14. Anjum, A., M. Zuber, K.M. Zia, A. Noreen, M. Naveed Anjum, S. Tabasum, Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 2016. 89: p.161–174.
  • 15. Roldán-Carrillo, T., R. Rodríguez-Vazqáuez, D. Díaz-Cervantes, H. Vázquez-Torres, A. Manzur-Guzmán, A. Torres-Domínguez, Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: enzyme production. Bioresource Technology, 2003. 86(1): p.1-5.
  • 16. Ma, X., P. R. Chang, J. Yu, M. Stumborg, Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 2008. 75(1): p.1–8.
  • 17. Naik, S. N., V. V. Goud, P.K. Rout, A.K. Dalai, Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 2010. 14(2): p.578–597.
  • 18. Tupa, M., L. Maldonado, A. Vazquez, M. L. Foresti, Simple organocatalytic route for the synthesis of starch esters. Carbohydrate Polymers 2013. 98(1): p.349– 357.
  • 19. [cited 2017 03 March]; Available from: http://www.carboncommentary.com/2011/09/02/2061
  • 20. Lagaron, J. M., A. Lopez-Rubio, Nanotechnology For Bioplastics: Opportunities, Challenges and Strategies. Trends in Food Science & Technology, 2011. 22(11): p.611-617.
  • 21. Singh, S. and A.K. Mohanty, Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 2007. 67(9): p.1753–1763.
  • 22. Paetau, I., C. Zue Chen, and J. lin Jane, Biodegradable Plastic Made from Soybean Products. 1. Effect of Preparation and Processing on Mechanical Properties and Water Absorption. Ind. Eng. Chem. Res. 1994. 33(7): p.1821-1827.
  • 23. Liu, W., M. Misra, P. Askeland, L. T. Drzal, A. K. Mohanty, Green composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer, 2005. 46(8): p.2710–272.
  • 24. Maran, J. P., V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate polymers, 2014. 30(101): p.20-28.
  • 25. Spaccini, R., D. Todisco, M. Drosos, A. Nebbioso, A. Piccolo, Decomposition of bio-degradable plastic polymer in a real on farm composting process. Chemical and Biological Technologies in Agriculture, 2016. 3(4) DOI 10.1186/s40538-016-0053-9.
  • 26. Ashok A., R. Abhijith, C. R. Rejeesh, Material characterization of starch derived bio degradable plastics and its mechanical property estimation. Materials Today: Proceedings, 2018. 5(1): p.2163–2170.
  • 27. Mahalakshmi V., Evaluation of Biodegradation of Plastics. International Journal Of Innovative Research & Development, 2014. 3(7): p.185-190.
  • 28. Ismail, N. A., S. M. Tahir, N. Yahya, M. F.A. Wahid, N. E. Khairuddin, I. Hashim, N. Rosli, M. A. Abdullah, Synthesis and Characterization of Biodegradable Starch-based Bioplastics. Materials Science Forum, 2016. 846: p. 673-678.
  • 29. Guohua, Z., L. Ya, F. Cuilan, Z. Min, Z. Caiqiong, C. Zongdao, Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability, 2006. 91(4): p.703–711.

Production of bioplastic from potato peel waste and investigation of its biodegradability

Year 2019, , 93 - 97, 15.08.2019
https://doi.org/10.35860/iarej.420633

Abstract

Recently, environmental problems
caused by petroleum-based plastics have been increasing. Therefore, researchers
have begun to investigate new materials that may be alternatives to plastics.
Bioplastics are considered as green materials alternatives to plastics and they
are produced from renewable resources such as corn and potatoes, or
microorganisms under certain conditions. In addition, most researchers are
concerned with renewable resources for non-food using, such as bioplastic production.
For this reason, researchers have been focusing on the utilization of the wastes
as bioplastic products. In this study, the bioplastic was produced from potato peel
as the food industry waste. Also, some properties of the produced bioplastic
such as water absorption capacity and biodegradability were analyzed.
Furthermore, water absorption capacity and biodegradability of a commercial
bioplastic were also determined in order for the comparison with the one produced
from potato peel waste in different conditions. It was found that the produced
potato peel bioplastic (PPB) had higher water absorption capacity than
commercial bioplastic (CB). Therefore, PPB may not be used in the food service
industry but can be used as packing material. Biodegradability tests showed
that PPB biodegraded at about 71% in moist soil and 100% in vermicompost within
four weeks. On the other hand, it was determined that CB was not degraded in the
soil or in the compost in four weeks. Therefore, as a food industry waste,
potato peel can be used in biodegradable bioplastic production. In this way,
petroleum-based plastic pollution may be decreased both in Turkey and the
world.

References

  • 1. Mekonnen, T., P. Mussone, H. Khalil, D. Bressler, Progress in bio-based plastics and plasticizing modifications. Journal of Material Chemistry A, 2013. 43(1): p.13379-13398.
  • 2. Zarate-Ramirez, L.S., A. Romero, I. Martinez, C. Bengoeche, P. Partal, A. Guerrero, Effect of aldehydes on thermomechanical properties of gluten-based bioplastics. Food and Bioproducts Processing, 2014. 92: p.20–29.
  • 3. Philp, J.C., R.J. Ritchie, K. Guy, Biobased plastics in a bioeconomy. Trends in Biotechnology, 2013. 31(2): p.65-67.
  • 4. Barker, T., In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. 2010, USA: Cambridge University Press.
  • 5. El Kadi, S., Bioplastic production form inexpensive sources bacterial biosynthesis, cultivation system, production and biodegrability. 2010, USA: VDM Publishing House.
  • 6. Peelman, N., P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F.V. Impe, F. Devlieghere, Application of bioplastics for food packaging. Trends in Food Science and Technology, 2013. 32(2):p. 128-141.
  • 7. Mirel. [cited 2017 03 March]; Available from: https://pdfs.semanticscholar.org/fa36/d6c497ea7d4d9830682a671ee11cd2746d30.pdf
  • 8. Karana, E., Characterization of ‘natural’ and ‘high-quality’ materials to improve perception of bioplastics. Journal of Cleaner Production, 2012. 37: p. 316-325.
  • 9. Sarasa, J., J. M. Gracia, C. Javierre, Study of the biodisintegration of a bioplastic material waste. Bioresource Technology, 2008. 100(15): p.3764-3768
  • 10. Luengo, J. M., B. Garcia, A. Sandoval, G. Naharro, E. R. Olivera, Bioplastics from microorganisms. Current Opinion in Microbiology, 2003. 6(3): p.251–260.
  • 11. Alvarez-Chavez, C.R., S. Edward, R. Moure-Eraso, K. Geiser, Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of Cleaner Production, 2012. 23(1): p.47–56.
  • 12. Schulze, C., M. Juraschek, C. Herrmann, S. Thiede, Energy Analysis of Bioplastics Processing. Procedia CIRP 2017. 61: p. 600-605.
  • 13. Kaith, B.S., R. Jindal, A.K. Jana, M. Maiti, Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers – Evaluation of thermal, physico-chemical and mechanical properties. Bioresource Technology, 2009. 101(17): p. 6843–6851.
  • 14. Anjum, A., M. Zuber, K.M. Zia, A. Noreen, M. Naveed Anjum, S. Tabasum, Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 2016. 89: p.161–174.
  • 15. Roldán-Carrillo, T., R. Rodríguez-Vazqáuez, D. Díaz-Cervantes, H. Vázquez-Torres, A. Manzur-Guzmán, A. Torres-Domínguez, Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: enzyme production. Bioresource Technology, 2003. 86(1): p.1-5.
  • 16. Ma, X., P. R. Chang, J. Yu, M. Stumborg, Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 2008. 75(1): p.1–8.
  • 17. Naik, S. N., V. V. Goud, P.K. Rout, A.K. Dalai, Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 2010. 14(2): p.578–597.
  • 18. Tupa, M., L. Maldonado, A. Vazquez, M. L. Foresti, Simple organocatalytic route for the synthesis of starch esters. Carbohydrate Polymers 2013. 98(1): p.349– 357.
  • 19. [cited 2017 03 March]; Available from: http://www.carboncommentary.com/2011/09/02/2061
  • 20. Lagaron, J. M., A. Lopez-Rubio, Nanotechnology For Bioplastics: Opportunities, Challenges and Strategies. Trends in Food Science & Technology, 2011. 22(11): p.611-617.
  • 21. Singh, S. and A.K. Mohanty, Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Composites Science and Technology, 2007. 67(9): p.1753–1763.
  • 22. Paetau, I., C. Zue Chen, and J. lin Jane, Biodegradable Plastic Made from Soybean Products. 1. Effect of Preparation and Processing on Mechanical Properties and Water Absorption. Ind. Eng. Chem. Res. 1994. 33(7): p.1821-1827.
  • 23. Liu, W., M. Misra, P. Askeland, L. T. Drzal, A. K. Mohanty, Green composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer, 2005. 46(8): p.2710–272.
  • 24. Maran, J. P., V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Degradation behavior of biocomposites based on cassava starch buried under indoor soil conditions. Carbohydrate polymers, 2014. 30(101): p.20-28.
  • 25. Spaccini, R., D. Todisco, M. Drosos, A. Nebbioso, A. Piccolo, Decomposition of bio-degradable plastic polymer in a real on farm composting process. Chemical and Biological Technologies in Agriculture, 2016. 3(4) DOI 10.1186/s40538-016-0053-9.
  • 26. Ashok A., R. Abhijith, C. R. Rejeesh, Material characterization of starch derived bio degradable plastics and its mechanical property estimation. Materials Today: Proceedings, 2018. 5(1): p.2163–2170.
  • 27. Mahalakshmi V., Evaluation of Biodegradation of Plastics. International Journal Of Innovative Research & Development, 2014. 3(7): p.185-190.
  • 28. Ismail, N. A., S. M. Tahir, N. Yahya, M. F.A. Wahid, N. E. Khairuddin, I. Hashim, N. Rosli, M. A. Abdullah, Synthesis and Characterization of Biodegradable Starch-based Bioplastics. Materials Science Forum, 2016. 846: p. 673-678.
  • 29. Guohua, Z., L. Ya, F. Cuilan, Z. Min, Z. Caiqiong, C. Zongdao, Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability, 2006. 91(4): p.703–711.
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Ezgi Bezirhan Arıkan 0000-0003-4203-165X

H. Duygu Bilgen 0000-0002-9510-8131

Publication Date August 15, 2019
Submission Date May 3, 2018
Acceptance Date April 18, 2019
Published in Issue Year 2019

Cite

APA Bezirhan Arıkan, E., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal, 3(2), 93-97. https://doi.org/10.35860/iarej.420633
AMA Bezirhan Arıkan E, Bilgen HD. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. Adv. Res. Eng. J. August 2019;3(2):93-97. doi:10.35860/iarej.420633
Chicago Bezirhan Arıkan, Ezgi, and H. Duygu Bilgen. “Production of Bioplastic from Potato Peel Waste and Investigation of Its Biodegradability”. International Advanced Researches and Engineering Journal 3, no. 2 (August 2019): 93-97. https://doi.org/10.35860/iarej.420633.
EndNote Bezirhan Arıkan E, Bilgen HD (August 1, 2019) Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal 3 2 93–97.
IEEE E. Bezirhan Arıkan and H. D. Bilgen, “Production of bioplastic from potato peel waste and investigation of its biodegradability”, Int. Adv. Res. Eng. J., vol. 3, no. 2, pp. 93–97, 2019, doi: 10.35860/iarej.420633.
ISNAD Bezirhan Arıkan, Ezgi - Bilgen, H. Duygu. “Production of Bioplastic from Potato Peel Waste and Investigation of Its Biodegradability”. International Advanced Researches and Engineering Journal 3/2 (August 2019), 93-97. https://doi.org/10.35860/iarej.420633.
JAMA Bezirhan Arıkan E, Bilgen HD. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. Adv. Res. Eng. J. 2019;3:93–97.
MLA Bezirhan Arıkan, Ezgi and H. Duygu Bilgen. “Production of Bioplastic from Potato Peel Waste and Investigation of Its Biodegradability”. International Advanced Researches and Engineering Journal, vol. 3, no. 2, 2019, pp. 93-97, doi:10.35860/iarej.420633.
Vancouver Bezirhan Arıkan E, Bilgen HD. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. Adv. Res. Eng. J. 2019;3(2):93-7.

Cited By






















































Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.