Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 2, 81 - 85, 15.08.2019
https://doi.org/10.35860/iarej.411717

Abstract

References

  • 1. Warheit, D. B., Sayes, C. M., Reed, K. L., & Swain, K. A. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacology & therapeutics, 2008, 120 (1), 35-42.
  • 2. Gonzalez, L., Lison, D., & Kirsch-Volders, M. Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology, 2008, 2(4), 252-273.
  • 3. Geim, Andre K., and Konstantin S. Novoselov. The rise of graphene, Nature materials, 2007, 6.3, 183.
  • 4. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. The electronic properties of graphene. Reviews of modern physics, 2009, 81(1), 109.
  • 5. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano, 2008, 2(3), 463-470.
  • 6. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. Graphene-based composite materials. nature, 2006, 442(7100), 282.
  • 7. Wang, C., Li, D., Too, C. O., & Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials, 2009, 21(13), 2604-2606.
  • 8. Pasricha, R., Gupta, S., & Srivastava, A. K. A Facile and Novel Synthesis of Ag–Graphene‐Based Nanocomposites. Small, 2009, 5(20), 2253-2259.
  • 9. Shi, Y., Fang, W., Zhang, K., Zhang, W., & Li, L. J. Photoelectrical Response in Single‐Layer Graphene Transistors. Small, 2009, 5(17), 2005-2011.
  • 10. Lv, X., Huang, Y., Liu, Z., Tian, J., Wang, Y., Ma, Y., ... & Chen, Y. Photoconductivity of Bulk‐Film‐Based Graphene Sheets. Small, 2009, 5(14), 1682-1687.
  • 11. Dhand, V., Rhee, K. Y., Kim, H. J., & Jung, D. H. A comprehensive review of graphene nanocomposites: research status and trends. Journal of Nanomaterials, 2013, 158.
  • 12. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. Improved synthesis of graphene oxide. ACS nano, 2010, 4(8), 4806-4814.
  • 13. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., & Tour, J. M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323), 549.
  • 14. Urbas, K., Aleksandrzak, M., Jedrzejczak, M., Jedrzejczak, M., Rakoczy, R., Chen, X., & Mijowska, E. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale research letters, 2014, 9(1), 656.
  • 15. Yang, K., Feng, L., Hong, H., Cai, W., & Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature protocols, 2013, 8(12), 2392.
  • 16. Zhang, Y., Sun, C., Kohler, N., & Zhang, M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomedical microdevices, 2004, 6(1), 33-40.
  • 17. Deb, A., & Vimala, R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 2018, 43, 333-342.
  • 18. Huang, Peng, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240.
  • 19. Low, Philip S.; Henne, Walter A.; Doorneweerd, Derek D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of chemical research, 2007, 41.1: 120-129.
  • 20. Qin, X. C., Guo, Z. Y., Liu, Z. M., Zhang, W., Wan, M. M., & Yang, B. W. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Journal of photochemistry and photobiology B: Biology, 2013, 120, 156-162.
  • 21. Hummers Jr, W. S., & Offeman, R. E. Preparation of graphitic oxide. Journal of the american chemical society, 1958, 80(6), 1339-1339.
  • 22. Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of materials, 1999, 11(3), 771-778.
  • 23. Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
  • 24. Keklikcioğlu Çakmak, N, Temel, Ü, Yapıcı, K. Examination Of Rheological Behavior Of Water-Based Graphene Oxide Nanofluids. Cumhuriyet Science Journal, 2017, 38 (4), 176-183.
  • 25. Szabó, T., Berkesi, O., & Dékány, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon, 2005, 43(15), 3186-3189.
  • 26. Pradhan, S. K., Xiao, B., Mishra, S., Killam, A., & Pradhan, A. K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Scientific reports, 2016, 6, 26763.
  • 27. Angelopoulou, A., Voulgari, E., Diamanti, E. K., Gournis, D., & Avgoustakis, K. Graphene oxide stabilized by PLA–PEG copolymers for the controlled delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 18-26.
  • 28. Reed, B. W., & Sarikaya, M. Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Physical Review B, 2001, 64(19), 195404.

Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies

Year 2019, Volume: 3 Issue: 2, 81 - 85, 15.08.2019
https://doi.org/10.35860/iarej.411717

Abstract

Cancer is the growth and proliferation of damage-ending
cells in an uncontrolled or abnormal way. Today, it takes place among the most
important health problems around the world and in our country. Surgery,
radiotherapy, and chemotherapy are the main treatment methods in cancer
treatment. The development of resistance to chemotherapeutic medicines has led
scientists to investigate this issue as well as the drug’s ability to reach the
targeted tumor site and destroying cancer cells in addition to normal cells.
The production of various nanostructures for anticancer drug development has
been one of the most important areas of nanomedicine. Thus, in the present
research, the improved Hummers’ method was employed for the synthesis of graphene
oxide nanoparticle (NGO), and it was activated by the folic acid (FA) antibody
to increase targeting ability after attachment of the drug to the nanostructure
systems. SEM, FTIR, XRD, UV/Vis spectroscopy, and
zeta potential analysis were performed for characterization of the products.

The highest absorbance of the FA-NGO/DIW nanostructures produced at the
concentration of 0.01 mg/ml-0.05 mg/ml synthesized by the Hummers’ method and in
the UV/Vis spectra, peaks at 232 nm and 270 nm corresponds to NGO-DIW and
FA-NGO/DIW, respectively. The zeta potential value above 35 mV was obtained in
all measurements, and the NGO-DIW and NGO-FA-DIW samples
maintained stability for days.
These findings are consistent with the
few studies in the literature, and this study will guide future studies in
which nanoparticle systems will be directed to the target by binding
chemotherapeutic drugs. 

References

  • 1. Warheit, D. B., Sayes, C. M., Reed, K. L., & Swain, K. A. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacology & therapeutics, 2008, 120 (1), 35-42.
  • 2. Gonzalez, L., Lison, D., & Kirsch-Volders, M. Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology, 2008, 2(4), 252-273.
  • 3. Geim, Andre K., and Konstantin S. Novoselov. The rise of graphene, Nature materials, 2007, 6.3, 183.
  • 4. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. The electronic properties of graphene. Reviews of modern physics, 2009, 81(1), 109.
  • 5. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano, 2008, 2(3), 463-470.
  • 6. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. Graphene-based composite materials. nature, 2006, 442(7100), 282.
  • 7. Wang, C., Li, D., Too, C. O., & Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials, 2009, 21(13), 2604-2606.
  • 8. Pasricha, R., Gupta, S., & Srivastava, A. K. A Facile and Novel Synthesis of Ag–Graphene‐Based Nanocomposites. Small, 2009, 5(20), 2253-2259.
  • 9. Shi, Y., Fang, W., Zhang, K., Zhang, W., & Li, L. J. Photoelectrical Response in Single‐Layer Graphene Transistors. Small, 2009, 5(17), 2005-2011.
  • 10. Lv, X., Huang, Y., Liu, Z., Tian, J., Wang, Y., Ma, Y., ... & Chen, Y. Photoconductivity of Bulk‐Film‐Based Graphene Sheets. Small, 2009, 5(14), 1682-1687.
  • 11. Dhand, V., Rhee, K. Y., Kim, H. J., & Jung, D. H. A comprehensive review of graphene nanocomposites: research status and trends. Journal of Nanomaterials, 2013, 158.
  • 12. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. Improved synthesis of graphene oxide. ACS nano, 2010, 4(8), 4806-4814.
  • 13. Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., & Tour, J. M. Growth of graphene from solid carbon sources. Nature, 2010, 468(7323), 549.
  • 14. Urbas, K., Aleksandrzak, M., Jedrzejczak, M., Jedrzejczak, M., Rakoczy, R., Chen, X., & Mijowska, E. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale research letters, 2014, 9(1), 656.
  • 15. Yang, K., Feng, L., Hong, H., Cai, W., & Liu, Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature protocols, 2013, 8(12), 2392.
  • 16. Zhang, Y., Sun, C., Kohler, N., & Zhang, M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomedical microdevices, 2004, 6(1), 33-40.
  • 17. Deb, A., & Vimala, R. Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 2018, 43, 333-342.
  • 18. Huang, Peng, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1: 240.
  • 19. Low, Philip S.; Henne, Walter A.; Doorneweerd, Derek D. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of chemical research, 2007, 41.1: 120-129.
  • 20. Qin, X. C., Guo, Z. Y., Liu, Z. M., Zhang, W., Wan, M. M., & Yang, B. W. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Journal of photochemistry and photobiology B: Biology, 2013, 120, 156-162.
  • 21. Hummers Jr, W. S., & Offeman, R. E. Preparation of graphitic oxide. Journal of the american chemical society, 1958, 80(6), 1339-1339.
  • 22. Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of materials, 1999, 11(3), 771-778.
  • 23. Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
  • 24. Keklikcioğlu Çakmak, N, Temel, Ü, Yapıcı, K. Examination Of Rheological Behavior Of Water-Based Graphene Oxide Nanofluids. Cumhuriyet Science Journal, 2017, 38 (4), 176-183.
  • 25. Szabó, T., Berkesi, O., & Dékány, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon, 2005, 43(15), 3186-3189.
  • 26. Pradhan, S. K., Xiao, B., Mishra, S., Killam, A., & Pradhan, A. K. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application. Scientific reports, 2016, 6, 26763.
  • 27. Angelopoulou, A., Voulgari, E., Diamanti, E. K., Gournis, D., & Avgoustakis, K. Graphene oxide stabilized by PLA–PEG copolymers for the controlled delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 18-26.
  • 28. Reed, B. W., & Sarikaya, M. Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Physical Review B, 2001, 64(19), 195404.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Neşe Keklikcioğlu Çakmak 0000-0002-8634-9232

Mustafa Küçükyazıcı This is me 0000-0002-4030-9147

Atakan Eroğlu This is me 0000-0003-4544-5225

Publication Date August 15, 2019
Submission Date April 2, 2018
Acceptance Date September 10, 2018
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Keklikcioğlu Çakmak, N., Küçükyazıcı, M., & Eroğlu, A. (2019). Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. International Advanced Researches and Engineering Journal, 3(2), 81-85. https://doi.org/10.35860/iarej.411717
AMA Keklikcioğlu Çakmak N, Küçükyazıcı M, Eroğlu A. Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. Int. Adv. Res. Eng. J. August 2019;3(2):81-85. doi:10.35860/iarej.411717
Chicago Keklikcioğlu Çakmak, Neşe, Mustafa Küçükyazıcı, and Atakan Eroğlu. “Synthesis and Stability Analysis of Folic Acid-Graphene Oxide Nanoparticles for Drug Delivery and Targeted Cancer Therapies”. International Advanced Researches and Engineering Journal 3, no. 2 (August 2019): 81-85. https://doi.org/10.35860/iarej.411717.
EndNote Keklikcioğlu Çakmak N, Küçükyazıcı M, Eroğlu A (August 1, 2019) Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. International Advanced Researches and Engineering Journal 3 2 81–85.
IEEE N. Keklikcioğlu Çakmak, M. Küçükyazıcı, and A. Eroğlu, “Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies”, Int. Adv. Res. Eng. J., vol. 3, no. 2, pp. 81–85, 2019, doi: 10.35860/iarej.411717.
ISNAD Keklikcioğlu Çakmak, Neşe et al. “Synthesis and Stability Analysis of Folic Acid-Graphene Oxide Nanoparticles for Drug Delivery and Targeted Cancer Therapies”. International Advanced Researches and Engineering Journal 3/2 (August 2019), 81-85. https://doi.org/10.35860/iarej.411717.
JAMA Keklikcioğlu Çakmak N, Küçükyazıcı M, Eroğlu A. Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. Int. Adv. Res. Eng. J. 2019;3:81–85.
MLA Keklikcioğlu Çakmak, Neşe et al. “Synthesis and Stability Analysis of Folic Acid-Graphene Oxide Nanoparticles for Drug Delivery and Targeted Cancer Therapies”. International Advanced Researches and Engineering Journal, vol. 3, no. 2, 2019, pp. 81-85, doi:10.35860/iarej.411717.
Vancouver Keklikcioğlu Çakmak N, Küçükyazıcı M, Eroğlu A. Synthesis and stability analysis of folic acid-graphene oxide nanoparticles for drug delivery and targeted cancer therapies. Int. Adv. Res. Eng. J. 2019;3(2):81-5.

Cited By













Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.