Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 2, 94 - 98, 15.08.2020
https://doi.org/10.35860/iarej.714811

Abstract

References

  • 1. Zhang, M., Q. Deng, L. Shi, A. Cao, H. Pang, S. Hu, Nanobowl array fabrication based on nanoimprint lithography. Optik, 2016. 127(1): p. 145-147.
  • 2. Wanke, M. C., O. Lehmann, K. Muller, Q. Wen, M. Stuke, Laser Rapid Prototyping of Photonic Band-Gap Microstructures. Science, 1997. 275(5304): p. 1284-1286.
  • 3. Haes, A. J. and R. P. Van Duyne, A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc., 2002. 124(3): p. 10596-10604.
  • 4. Kim, Y. N., S. J. Kim, E. K. Lee, E. O. Chi, N. H. Hur, C. S. Hong, Large magnetoresistance in three dimensionally ordered macroporous perovskite manganites prepared by a colloidal templating method. J. Mater. Chem., 2004. 14(11): p. 1774-1777.
  • 5. Xu, L, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays. J.B, Wiley, Adv. Mater, 2003. 15(18): p. 1562-1564.
  • 6. Chi, E. O., Y. N. Kim, J. C. Kim, N. H. Hur, A macroporous perovskite manganite from colloidal templates with a Curie temperaure of 320 K. Chem. Mater., 2003. 15(10): p. 1929-1931.
  • 7. Xu, L., W. L. Zhou, C. Frommen, R. H. Baughman, A. A. Zakhidov, L. Malkinski, J. Q. Wang, J. B. Wiley, Electrodeposited nickel and gold nanoscale meshes with potentially interesting photonic properties. Chem. Commun., 2000. 12(17): p. 997-998.
  • 8. Kim, J. C., Y. N. Kim, N. H. Hur, W. S. Kim, Y. G. Kang, Highly ordered macroporous magnetic materials prepared by electrodeposition through colloidal template. Phys. Status Solidi, 2004. 241(7): p. 1585-1588.
  • 9. Xu, W. G., J. H. Li, S. X. Lu, Y. Q. Duan, C. X. Ma, X. F. Shi, Y. L. Yang, Y. B. Chen, 2012. Preparation of superhydrophobic ZnO films on zinc substrate by chemical solution method. Chem. Res. Chin. Univ., 2012. 28(3): p. 529-533.
  • 10. Ly, Park S., Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2018. 67: p. 417-428.
  • 11. Nisancı, F. B., U. Demir, Size-controlled electrochemical growth of PbS nanostructures into electrochemically patterned self-assembled monolayers. Langmuir, 2012. 281(22): p. 8571-8578.
  • 12. Booh, B. L., Polymers for Integrated Optical Waveguides, ed. B. L. Booh. Academic Press, Boston, 1993. p. 549.
  • 13. Schoer, J. K., F. P. Zamborini and R. M. Crooks, Scanning probe lithography. 3. Nanometer-scale electrochemical patterning of Au and organic resists in the absence of intentionally added solvents or electrolytes. J. Phys. Chem, 1996. 100 (26): p. 11086-11091.
  • 14. Schoer, J. K. and R. M. Crooks, Scanning Probe Lithography. 4. Characterization of Scanning Tunneling Microscope-Induced Patterns in n-Alkanethiol Self-Assembled Monolayers. Langmuir, 1997. 13(8): p, 2323-2332.
  • 15. Kramer, S., R. R. Fuierer, C. B. Gorman, Scanning probe lithography using self-assembled monolayers.Chem. Rev. 2003. 103(11): p. 4367-4418.
  • 16. Li, Y., B. W. Maynor and J. Liu, Electrochemical AFM “Dip-Pen” Nanolithography. J. Am. Chem. Soc., 2011. 123(32): p. 2105-2106.
  • 17. Demir, U., K. K. Balasubramanian, V. Cammarata, C. Shannon, Scanning probe lithography of novel Langmuir–Schaefer films: Electrochemical applications. J. Vac. Sci. Technol. B, 1995. 13(3): p. 1294-1299.
  • 18. Clark, S., M. Montague and T. P. Hammond, Selective deposition in multilayer assembly: SAMs as molecular templates. Supramolecular science, 1997. 4(1) : p. 141-146.
  • 19. Wang, Y., Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011. 29(5): p. 205-212.
  • 20. Robinson, J. T., F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, Reduced Graphene Oxide Molecular Sensors. Nano Lett., 2008. 8(10): p. 3137-3140.
  • 21. He, S., B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater., 2010. 20(3) : p. 453-459.
  • 22. Jung, I., D. A. Dikin, R. D. Piner, R. S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett., 2008. 8(12): p. 4283-4287.
  • 23. Segev-Bar, M. and H. Haick, Flexible sensors based on nanoparticles. ACS Nano, 2013. 7(10): p. 8366-8378.
  • 24. Ly, T. N., S. J. Par and S. J. Park, 2016. Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sens. Actuators B, 2016. 237: p. 452-458.
  • 25. Kahn, N., O. Lavie, M. Paz, Y. Segev, H. Haick, Dynamic Nanoparticle-Based Flexible Sensors: Diagnosis of Ovarian Carcinoma from Exhaled Breath. Nano Lett., 2015. 15(10): p. 7023-7028.
  • 26. Olichwer, N., E. W. Leib, A. H. Halfar, A. Petrov, T. Vossmeyer, Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl. Mater. Interfaces, 2012, 4 (11): p. 6151-6161.
  • 27. Ghosh, S. K. and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications.Chem. Rev., 2007. 107(11): p. 4797-4862.
  • 28. Dykman, L. A. and N. G. Khlebtsov, Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects Acta Nature, 2011. 3 (2): p. 34-55.

Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate

Year 2020, Volume: 4 Issue: 2, 94 - 98, 15.08.2020
https://doi.org/10.35860/iarej.714811

Abstract

In the present study, 1-dodecanethiol self-assembled monolayers (SAMs) on graphene oxide (GO) –Au (Gold) thin films as molecular templates for the selective deposition of multilayer films was performed. Thus, heterostructured GO/Au/DDT and DDT/Au/GO thin film are fabricated by sputtering Au target onto modified GO structure or self-assembled 1-dodecanethiol (DDT) arrays. It has been shown that a new device concept can be made by completing the glass substrate with the surface heterostructures; i.e. layer GO sheet or DDT with Au nanoparticles (Au NPs). In the light of the performed study, the layer-by-layer assembling of DDT on the GO sheet-Au thin films template has been proved for the distinct conjugation. Also, Optical and morphological characterizations are coherent with the instantaneous nucleation and growth model over the modified DDT-Au NPs-GO or GO-Au NPs-DDT thin films in the aspect of surface roughness, the phonon transport, and other multilayer films properties. As a consequence, the multilayer films of DDT-capped Au thin films and GO sheets have shown a better hybrid nanostructure with higher consistency, hierarchy and surface area. In addition, this work will present a new perspective for template preparation based on nanostructured thin films due to its unique properties resulting from nanoscale properties. 

References

  • 1. Zhang, M., Q. Deng, L. Shi, A. Cao, H. Pang, S. Hu, Nanobowl array fabrication based on nanoimprint lithography. Optik, 2016. 127(1): p. 145-147.
  • 2. Wanke, M. C., O. Lehmann, K. Muller, Q. Wen, M. Stuke, Laser Rapid Prototyping of Photonic Band-Gap Microstructures. Science, 1997. 275(5304): p. 1284-1286.
  • 3. Haes, A. J. and R. P. Van Duyne, A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J. Am. Chem. Soc., 2002. 124(3): p. 10596-10604.
  • 4. Kim, Y. N., S. J. Kim, E. K. Lee, E. O. Chi, N. H. Hur, C. S. Hong, Large magnetoresistance in three dimensionally ordered macroporous perovskite manganites prepared by a colloidal templating method. J. Mater. Chem., 2004. 14(11): p. 1774-1777.
  • 5. Xu, L, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, Synthesis and Magnetic Behavior of Periodic Nickel Sphere Arrays. J.B, Wiley, Adv. Mater, 2003. 15(18): p. 1562-1564.
  • 6. Chi, E. O., Y. N. Kim, J. C. Kim, N. H. Hur, A macroporous perovskite manganite from colloidal templates with a Curie temperaure of 320 K. Chem. Mater., 2003. 15(10): p. 1929-1931.
  • 7. Xu, L., W. L. Zhou, C. Frommen, R. H. Baughman, A. A. Zakhidov, L. Malkinski, J. Q. Wang, J. B. Wiley, Electrodeposited nickel and gold nanoscale meshes with potentially interesting photonic properties. Chem. Commun., 2000. 12(17): p. 997-998.
  • 8. Kim, J. C., Y. N. Kim, N. H. Hur, W. S. Kim, Y. G. Kang, Highly ordered macroporous magnetic materials prepared by electrodeposition through colloidal template. Phys. Status Solidi, 2004. 241(7): p. 1585-1588.
  • 9. Xu, W. G., J. H. Li, S. X. Lu, Y. Q. Duan, C. X. Ma, X. F. Shi, Y. L. Yang, Y. B. Chen, 2012. Preparation of superhydrophobic ZnO films on zinc substrate by chemical solution method. Chem. Res. Chin. Univ., 2012. 28(3): p. 529-533.
  • 10. Ly, Park S., Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2018. 67: p. 417-428.
  • 11. Nisancı, F. B., U. Demir, Size-controlled electrochemical growth of PbS nanostructures into electrochemically patterned self-assembled monolayers. Langmuir, 2012. 281(22): p. 8571-8578.
  • 12. Booh, B. L., Polymers for Integrated Optical Waveguides, ed. B. L. Booh. Academic Press, Boston, 1993. p. 549.
  • 13. Schoer, J. K., F. P. Zamborini and R. M. Crooks, Scanning probe lithography. 3. Nanometer-scale electrochemical patterning of Au and organic resists in the absence of intentionally added solvents or electrolytes. J. Phys. Chem, 1996. 100 (26): p. 11086-11091.
  • 14. Schoer, J. K. and R. M. Crooks, Scanning Probe Lithography. 4. Characterization of Scanning Tunneling Microscope-Induced Patterns in n-Alkanethiol Self-Assembled Monolayers. Langmuir, 1997. 13(8): p, 2323-2332.
  • 15. Kramer, S., R. R. Fuierer, C. B. Gorman, Scanning probe lithography using self-assembled monolayers.Chem. Rev. 2003. 103(11): p. 4367-4418.
  • 16. Li, Y., B. W. Maynor and J. Liu, Electrochemical AFM “Dip-Pen” Nanolithography. J. Am. Chem. Soc., 2011. 123(32): p. 2105-2106.
  • 17. Demir, U., K. K. Balasubramanian, V. Cammarata, C. Shannon, Scanning probe lithography of novel Langmuir–Schaefer films: Electrochemical applications. J. Vac. Sci. Technol. B, 1995. 13(3): p. 1294-1299.
  • 18. Clark, S., M. Montague and T. P. Hammond, Selective deposition in multilayer assembly: SAMs as molecular templates. Supramolecular science, 1997. 4(1) : p. 141-146.
  • 19. Wang, Y., Z. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011. 29(5): p. 205-212.
  • 20. Robinson, J. T., F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, Reduced Graphene Oxide Molecular Sensors. Nano Lett., 2008. 8(10): p. 3137-3140.
  • 21. He, S., B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan, A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater., 2010. 20(3) : p. 453-459.
  • 22. Jung, I., D. A. Dikin, R. D. Piner, R. S. Ruoff, Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett., 2008. 8(12): p. 4283-4287.
  • 23. Segev-Bar, M. and H. Haick, Flexible sensors based on nanoparticles. ACS Nano, 2013. 7(10): p. 8366-8378.
  • 24. Ly, T. N., S. J. Par and S. J. Park, 2016. Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sens. Actuators B, 2016. 237: p. 452-458.
  • 25. Kahn, N., O. Lavie, M. Paz, Y. Segev, H. Haick, Dynamic Nanoparticle-Based Flexible Sensors: Diagnosis of Ovarian Carcinoma from Exhaled Breath. Nano Lett., 2015. 15(10): p. 7023-7028.
  • 26. Olichwer, N., E. W. Leib, A. H. Halfar, A. Petrov, T. Vossmeyer, Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl. Mater. Interfaces, 2012, 4 (11): p. 6151-6161.
  • 27. Ghosh, S. K. and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications.Chem. Rev., 2007. 107(11): p. 4797-4862.
  • 28. Dykman, L. A. and N. G. Khlebtsov, Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects Acta Nature, 2011. 3 (2): p. 34-55.
There are 28 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Fatma Bayrakçeken Nişancı 0000-0002-3166-2301

Publication Date August 15, 2020
Submission Date April 5, 2020
Acceptance Date May 10, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Bayrakçeken Nişancı, F. (2020). Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate. International Advanced Researches and Engineering Journal, 4(2), 94-98. https://doi.org/10.35860/iarej.714811
AMA Bayrakçeken Nişancı F. Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate. Int. Adv. Res. Eng. J. August 2020;4(2):94-98. doi:10.35860/iarej.714811
Chicago Bayrakçeken Nişancı, Fatma. “Layer-by-Layer Growth of Molecular Self-Assembled Monolayers /sputtered Gold Thin films/Graphene Oxide on Glass Substrate”. International Advanced Researches and Engineering Journal 4, no. 2 (August 2020): 94-98. https://doi.org/10.35860/iarej.714811.
EndNote Bayrakçeken Nişancı F (August 1, 2020) Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate. International Advanced Researches and Engineering Journal 4 2 94–98.
IEEE F. Bayrakçeken Nişancı, “Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate”, Int. Adv. Res. Eng. J., vol. 4, no. 2, pp. 94–98, 2020, doi: 10.35860/iarej.714811.
ISNAD Bayrakçeken Nişancı, Fatma. “Layer-by-Layer Growth of Molecular Self-Assembled Monolayers /sputtered Gold Thin films/Graphene Oxide on Glass Substrate”. International Advanced Researches and Engineering Journal 4/2 (August 2020), 94-98. https://doi.org/10.35860/iarej.714811.
JAMA Bayrakçeken Nişancı F. Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate. Int. Adv. Res. Eng. J. 2020;4:94–98.
MLA Bayrakçeken Nişancı, Fatma. “Layer-by-Layer Growth of Molecular Self-Assembled Monolayers /sputtered Gold Thin films/Graphene Oxide on Glass Substrate”. International Advanced Researches and Engineering Journal, vol. 4, no. 2, 2020, pp. 94-98, doi:10.35860/iarej.714811.
Vancouver Bayrakçeken Nişancı F. Layer-by-layer growth of molecular self-assembled monolayers /sputtered gold thin films/graphene oxide on glass substrate. Int. Adv. Res. Eng. J. 2020;4(2):94-8.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.