Research Article
BibTex RIS Cite

Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods

Year 2022, Volume: 6 Issue: 3, 167 - 175, 15.12.2022
https://doi.org/10.35860/iarej.1161044

Abstract

In this study, the producibility of activated carbon from wood waste by using the chemical activation method was investigated and the produced activated carbon was compared with commercial activated carbon. Activated carbon was produced from black poplar wood waste using zinc chloride and phosphoric acid. The density values of the produced activated carbons were determined by the picometer method. Field Emission Scanning Electron Microscopy (FESEM) was used to analyze the microstructure and perform the elemental mapping. To determine the chemical content of activated carbon, it was also characterized by Fourier-transform infrared spectroscopy (FTIR) and energy dispersion spectroscopy (EDS). Based on the density and FE-SEM results, it was determined that the produced activated carbon had a lower density and porous structure. In addition, EDS analysis showed that the activated carbon produced from black poplar wood waste was purer than commercial activated carbon.

References

  • 1. Çiftçi, H., Aktif karbonla topraktan tuz adsorpsiyonu yolu ile tuzlanmış tarım arazilerinin ıslah edilebileceğinin araştırılması, Msc Thesis, Harran Üniversitesi, Fen Bilimleri Enstitüsü (2013).
  • 2. Baytar, O., İğde çekirdeği ve kayın ağacından üretilen aktif karbonun ağır metal ve boyarmadde gideriminde kullanılması, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü (2015).
  • 3. Quinlivan, P.A., L. Li and D.R.U. Knappe, Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research, 2005. 39(8): p. 1663–1673.
  • 4. Okiel, K., M. El-Sayed and M.Y. El-Kady, Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum, 2011. 20(2): p. 9–15.
  • 5. Kantarli, I.C. and J. Yanik, Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of Hazardous Materials, 2010. 179(1): p. 348–356.
  • 6. Bülbül, Ş. and N. Akcakale, The Production and mechanical properties of carburized corn cob ash added rubber compounds. KGK-Kautschuk Gummi Kunststoffe, 2019. 72(4/19): p. 30–35.
  • 7. Bülbül, Ş., N. Akçakale, M. Yaşar and H. Gökmeşe, The effect of wood ash on the mechanical properties of rubber compounds. Materiali in Tehnologije, 2019. 53(3): p. 333–339.
  • 8. Bulbul, S., M. Yasar and N. Akcakale, Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties. Polymer(Korea), 2014. 38(5): p. 664–670.
  • 9. Naji, S.Z. and C.T. Tye, A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification. Energy Conversion and Management: X, 2022. 13: p. 100152.
  • 10. González-García, P., Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 2018. 82: p. 1393–1414.
  • 11. Roy, G.M., Activated Carbon Applications in the Food and Pharmaceutical Industries. 1994. CRC Press.
  • 12. Amine, A., H. Mohammadi, I. Bourais and G. Palleschi, Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 2006. 21(8): p. 1405–1423.
  • 13. Sha, Y., J. Lou, S. Bai, D. Wu, B. Liu and Y. Ling, Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture. Materials Research Bulletin, 2015. 64: p. 327–332.
  • 14. David, E. and J. Kopac, Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. Journal of Analytical and Applied Pyrolysis, 2014. 110: p. 322–332.
  • 15. Rashidi, N.A., S. Yusup, A. Borhan and L.H. Loong, Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technologies and Environmental Policy, 2014. 16(7): p. 1353–1361.
  • 16. Chen, Y., F. Zi, X. Hu, P. Yang, Y. Ma, H. Cheng, Q. Wang, X. Qin, Y. Liu, S. Chen and C. Wang, The use of new modified activated carbon in thiosulfate solution: A green gold recovery technology. Separation and Purification Technology, 2020. 230: p. 115834.
  • 17. Soleimani, M. and T. Kaghazchi, Gold recovery from loaded activated carbon using different solvents. Journal of the Chinese Institute of Chemical Engineers, 2008. 39(1): p. 9–11.
  • 18. Graydon, J.W., X. Zhang, D.W. Kirk and C.Q. Jia, Sorption and stability of mercury on activated carbon for emission control. Journal of Hazardous Materials, 2009. 168(2): p. 978–982.
  • 19. Yan, R., D.T. Liang and J.H. Tay, Control of mercury vapor emissions from combustion flue gas. Environmental Science and Pollution Research, 2003. 10(6): p. 399.
  • 20. Sreńscek-Nazzal, J., W. Kamińska, B. Michalkiewicz and Z.C. Koren, Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products, 2013. 47: p. 153–159.
  • 21. Martínez de Yuso, A., M.T. Izquierdo, R. Valenciano and B. Rubio, Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes. Fuel Processing Technology, 2013. 110: p. 1–7.
  • 22. Volesky, B., Biosorbents for metal recovery. Trends in Biotechnology, 1987. 5(4): p. 96–101.
  • 23. Sevilla, M. and R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 2014. 7(4): p. 1250–1280.
  • 24. Faraji, S. and F.N. Ani, The development supercapacitor from activated carbon by electroless plating—A review. Renewable and Sustainable Energy Reviews, 2015. 42: p. 823–834.
  • 25. Béguin, F., V. Presser, A. Balducci and E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014. 26(14): p. 2219–2251.
  • 26. Chmiola, J., G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006. 313(5794): p. 1760–1763.
  • 27. https://www.fortunebusinessinsights.com/activated-carbon-market-102175. Accessed March 24, 2022.
  • 28. Yunus, Z.M., Y. G., A. Al-Gheethi, N. Othman, R. Hamdan and N.N. Ruslan, Advanced methods for activated carbon from agriculture wastes; a comprehensive review. International Journal of Environmental Analytical Chemistry, 2022. 102(1): p. 134–158.
  • 29. Wigmans, T., Industrial aspects of production and use of activated carbons. Carbon, 1989. 27(1): p. 13–22.
  • 30. Gündoğdu, A., Fabrika çay atıklarından aktif karbon üretimi, karakterizasyonu ve adsorpsiyon özelliklerinin incelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi (2018).
  • 31. Hajati, S., M. Ghaedi and S. Yaghoubi, Local, cheep and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: Optimization by surface response methodology. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 760–767.
  • 32. Lillo-Ródenas, M.A., J.P. Marco-Lozar, D. Cazorla-Amorós and A. Linares-Solano, Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 2007. 80(1): p. 166–174.
  • 33. Acharya, J., J.N. Sahu, C.R. Mohanty and B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 2009. 149(1): p. 249–262.
  • 34. Fernandez, M.E., G.V. Nunell, P.R. Bonelli and A.L. Cukierman, Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 2014. 62: p. 437–445.
  • 35. El Nemr, A., R.M. Aboughaly, A. El Sikaily, S. Ragab, M.S. Masoud and M.S. Ramadan, Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery. 2020. 1-19.
  • 36. Puziy, A.M., O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García and J.M.D. Tascón, Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 2005. 43(14): p. 2857–2868.
  • 37. Guo, Y. and D.A. Rockstraw, Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials, 2007. 100(1): p. 12–19.
  • 38. Örkün, Y., Fındık kabuğundan fiziksel ve kimyasal aktivasyonla aktif karbon üretimi ve karakterizasyonu, Ms Thesis, İstanbul Teknik Üniversitesi, Enerji Enstitüsü (2011).
  • 39. Rahim, Y.A., S.N. Aqmar and D.R. Dewi. ESR study of electron trapped on activated carbon by KOH and ZnCl2 activation. Journal of Materials Science and Engineering, 2010. 4(3): p. 1-10.
  • 40. Valizadeh, S., H. Younesi and N. Bahramifar. Preparation and Characterization of Activated Carbon from the Cones of Iranian Pine Trees (Pinus eldarica) by Chemical Activation with H3PO4 and Its Application for Removal of Sodium Dodecylbenzene Sulfonate Removal from Aqueous Solution. Water Conservation Science and Engineering, 2018. 3(4): p. 253–265.
  • 41. Shrestha, L.K., M. Thapa, R.G. Shrestha, S. Maji, R.R. Pradhananga and K. Ariga. Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C — Journal of Carbon Research, 2019. 5(1): p. 10.
  • 42. Liang, Y., H. Liu, Z. Li, R. Fu and D. Wu. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. Journal of Materials Chemistry A, 2013. 1(48): p. 15207–15211.
  • 43. Park, J.H., H. Ur Rasheed, K.H. Cho, H.C. Yoon and K.B. Yi. Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons. Korean Journal of Chemical Engineering, 2020. 37(6): p. 1029–1035.
  • 44. Monteiro, S.N., L.A.H. Terrones, F.P. Lopes and J.R.M. d’Almeida. Mechanical strength of polyester matrix composites reinforced with coconut fiber wastes. Revista Matéria, 2005. 10(4): p. 571–576.
  • 45. Jasinskas, A., G. Šiaudinis, M. Martinkus, D. Karčiauskienė, R. Repšienė, N. Pedišius and T. Vonžodas. Evaluation of Common Osier (Salix viminalis L.) and Black Poplar (Populus nigra L.) Biomass Productivity and Determination of Chemical and Energetic Properties of Chopped Plants Produced for Biofuel. Baltic Forestry, 2017. 23(3): p. 666-672.
  • 46. Bal Altuntaş, D., V. Nevruzoğlu, M. Dokumacı and Ş. Cam. Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Letters, 2020. 30(3): p. 307–313.
  • 47. Danish, M., R. Hashim, M.N.M. Ibrahim and O. Sulaiman. Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. Journal of Analytical and Applied Pyrolysis, 2013. 104: p. 418–425.
  • 48. Liu, X., C. He, X. Yu, Y. Bai, L. Ye, B. Wang and L. Zhang. Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technology, 2018. 326: p. 181–189.
  • 49. Vázquez-Santos, M.B., F. Suárez-García, A. Martínez-Alonso and J.M.D. Tascón. Activated Carbon Fibers with a High Heteroatom Content by Chemical Activation of PBO with Phosphoric Acid. Langmuir, 2012. 28(13): p. 5850–5860.
  • 50. Zhang, S., J. Zhu, Y. Qing, L. Wang, J. Zhao, J. Li, W. Tian, D. Jia and Z. Fan. Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Advanced Functional Materials, 2018. 28(52): p. 1805898.
  • 51. Jiang, Y., J. Li, Z. Jiang, M. Shi, R. Sheng, Z. Liu, S. Zhang, Y. Cao, T. Wei and Z. Fan. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon, 2021. 175: p. 281–288.
Year 2022, Volume: 6 Issue: 3, 167 - 175, 15.12.2022
https://doi.org/10.35860/iarej.1161044

Abstract

References

  • 1. Çiftçi, H., Aktif karbonla topraktan tuz adsorpsiyonu yolu ile tuzlanmış tarım arazilerinin ıslah edilebileceğinin araştırılması, Msc Thesis, Harran Üniversitesi, Fen Bilimleri Enstitüsü (2013).
  • 2. Baytar, O., İğde çekirdeği ve kayın ağacından üretilen aktif karbonun ağır metal ve boyarmadde gideriminde kullanılması, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü (2015).
  • 3. Quinlivan, P.A., L. Li and D.R.U. Knappe, Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research, 2005. 39(8): p. 1663–1673.
  • 4. Okiel, K., M. El-Sayed and M.Y. El-Kady, Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egyptian Journal of Petroleum, 2011. 20(2): p. 9–15.
  • 5. Kantarli, I.C. and J. Yanik, Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of Hazardous Materials, 2010. 179(1): p. 348–356.
  • 6. Bülbül, Ş. and N. Akcakale, The Production and mechanical properties of carburized corn cob ash added rubber compounds. KGK-Kautschuk Gummi Kunststoffe, 2019. 72(4/19): p. 30–35.
  • 7. Bülbül, Ş., N. Akçakale, M. Yaşar and H. Gökmeşe, The effect of wood ash on the mechanical properties of rubber compounds. Materiali in Tehnologije, 2019. 53(3): p. 333–339.
  • 8. Bulbul, S., M. Yasar and N. Akcakale, Effect of Changing of Filling Materials in NR-SBR Type Elastomer Based Rubber Materials on Mechanical Properties. Polymer(Korea), 2014. 38(5): p. 664–670.
  • 9. Naji, S.Z. and C.T. Tye, A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification. Energy Conversion and Management: X, 2022. 13: p. 100152.
  • 10. González-García, P., Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 2018. 82: p. 1393–1414.
  • 11. Roy, G.M., Activated Carbon Applications in the Food and Pharmaceutical Industries. 1994. CRC Press.
  • 12. Amine, A., H. Mohammadi, I. Bourais and G. Palleschi, Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 2006. 21(8): p. 1405–1423.
  • 13. Sha, Y., J. Lou, S. Bai, D. Wu, B. Liu and Y. Ling, Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture. Materials Research Bulletin, 2015. 64: p. 327–332.
  • 14. David, E. and J. Kopac, Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. Journal of Analytical and Applied Pyrolysis, 2014. 110: p. 322–332.
  • 15. Rashidi, N.A., S. Yusup, A. Borhan and L.H. Loong, Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technologies and Environmental Policy, 2014. 16(7): p. 1353–1361.
  • 16. Chen, Y., F. Zi, X. Hu, P. Yang, Y. Ma, H. Cheng, Q. Wang, X. Qin, Y. Liu, S. Chen and C. Wang, The use of new modified activated carbon in thiosulfate solution: A green gold recovery technology. Separation and Purification Technology, 2020. 230: p. 115834.
  • 17. Soleimani, M. and T. Kaghazchi, Gold recovery from loaded activated carbon using different solvents. Journal of the Chinese Institute of Chemical Engineers, 2008. 39(1): p. 9–11.
  • 18. Graydon, J.W., X. Zhang, D.W. Kirk and C.Q. Jia, Sorption and stability of mercury on activated carbon for emission control. Journal of Hazardous Materials, 2009. 168(2): p. 978–982.
  • 19. Yan, R., D.T. Liang and J.H. Tay, Control of mercury vapor emissions from combustion flue gas. Environmental Science and Pollution Research, 2003. 10(6): p. 399.
  • 20. Sreńscek-Nazzal, J., W. Kamińska, B. Michalkiewicz and Z.C. Koren, Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products, 2013. 47: p. 153–159.
  • 21. Martínez de Yuso, A., M.T. Izquierdo, R. Valenciano and B. Rubio, Toluene and n-hexane adsorption and recovery behavior on activated carbons derived from almond shell wastes. Fuel Processing Technology, 2013. 110: p. 1–7.
  • 22. Volesky, B., Biosorbents for metal recovery. Trends in Biotechnology, 1987. 5(4): p. 96–101.
  • 23. Sevilla, M. and R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 2014. 7(4): p. 1250–1280.
  • 24. Faraji, S. and F.N. Ani, The development supercapacitor from activated carbon by electroless plating—A review. Renewable and Sustainable Energy Reviews, 2015. 42: p. 823–834.
  • 25. Béguin, F., V. Presser, A. Balducci and E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014. 26(14): p. 2219–2251.
  • 26. Chmiola, J., G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P.L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006. 313(5794): p. 1760–1763.
  • 27. https://www.fortunebusinessinsights.com/activated-carbon-market-102175. Accessed March 24, 2022.
  • 28. Yunus, Z.M., Y. G., A. Al-Gheethi, N. Othman, R. Hamdan and N.N. Ruslan, Advanced methods for activated carbon from agriculture wastes; a comprehensive review. International Journal of Environmental Analytical Chemistry, 2022. 102(1): p. 134–158.
  • 29. Wigmans, T., Industrial aspects of production and use of activated carbons. Carbon, 1989. 27(1): p. 13–22.
  • 30. Gündoğdu, A., Fabrika çay atıklarından aktif karbon üretimi, karakterizasyonu ve adsorpsiyon özelliklerinin incelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi (2018).
  • 31. Hajati, S., M. Ghaedi and S. Yaghoubi, Local, cheep and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: Optimization by surface response methodology. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 760–767.
  • 32. Lillo-Ródenas, M.A., J.P. Marco-Lozar, D. Cazorla-Amorós and A. Linares-Solano, Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 2007. 80(1): p. 166–174.
  • 33. Acharya, J., J.N. Sahu, C.R. Mohanty and B.C. Meikap, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 2009. 149(1): p. 249–262.
  • 34. Fernandez, M.E., G.V. Nunell, P.R. Bonelli and A.L. Cukierman, Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 2014. 62: p. 437–445.
  • 35. El Nemr, A., R.M. Aboughaly, A. El Sikaily, S. Ragab, M.S. Masoud and M.S. Ramadan, Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery. 2020. 1-19.
  • 36. Puziy, A.M., O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García and J.M.D. Tascón, Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 2005. 43(14): p. 2857–2868.
  • 37. Guo, Y. and D.A. Rockstraw, Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials, 2007. 100(1): p. 12–19.
  • 38. Örkün, Y., Fındık kabuğundan fiziksel ve kimyasal aktivasyonla aktif karbon üretimi ve karakterizasyonu, Ms Thesis, İstanbul Teknik Üniversitesi, Enerji Enstitüsü (2011).
  • 39. Rahim, Y.A., S.N. Aqmar and D.R. Dewi. ESR study of electron trapped on activated carbon by KOH and ZnCl2 activation. Journal of Materials Science and Engineering, 2010. 4(3): p. 1-10.
  • 40. Valizadeh, S., H. Younesi and N. Bahramifar. Preparation and Characterization of Activated Carbon from the Cones of Iranian Pine Trees (Pinus eldarica) by Chemical Activation with H3PO4 and Its Application for Removal of Sodium Dodecylbenzene Sulfonate Removal from Aqueous Solution. Water Conservation Science and Engineering, 2018. 3(4): p. 253–265.
  • 41. Shrestha, L.K., M. Thapa, R.G. Shrestha, S. Maji, R.R. Pradhananga and K. Ariga. Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C — Journal of Carbon Research, 2019. 5(1): p. 10.
  • 42. Liang, Y., H. Liu, Z. Li, R. Fu and D. Wu. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. Journal of Materials Chemistry A, 2013. 1(48): p. 15207–15211.
  • 43. Park, J.H., H. Ur Rasheed, K.H. Cho, H.C. Yoon and K.B. Yi. Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons. Korean Journal of Chemical Engineering, 2020. 37(6): p. 1029–1035.
  • 44. Monteiro, S.N., L.A.H. Terrones, F.P. Lopes and J.R.M. d’Almeida. Mechanical strength of polyester matrix composites reinforced with coconut fiber wastes. Revista Matéria, 2005. 10(4): p. 571–576.
  • 45. Jasinskas, A., G. Šiaudinis, M. Martinkus, D. Karčiauskienė, R. Repšienė, N. Pedišius and T. Vonžodas. Evaluation of Common Osier (Salix viminalis L.) and Black Poplar (Populus nigra L.) Biomass Productivity and Determination of Chemical and Energetic Properties of Chopped Plants Produced for Biofuel. Baltic Forestry, 2017. 23(3): p. 666-672.
  • 46. Bal Altuntaş, D., V. Nevruzoğlu, M. Dokumacı and Ş. Cam. Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Letters, 2020. 30(3): p. 307–313.
  • 47. Danish, M., R. Hashim, M.N.M. Ibrahim and O. Sulaiman. Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. Journal of Analytical and Applied Pyrolysis, 2013. 104: p. 418–425.
  • 48. Liu, X., C. He, X. Yu, Y. Bai, L. Ye, B. Wang and L. Zhang. Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technology, 2018. 326: p. 181–189.
  • 49. Vázquez-Santos, M.B., F. Suárez-García, A. Martínez-Alonso and J.M.D. Tascón. Activated Carbon Fibers with a High Heteroatom Content by Chemical Activation of PBO with Phosphoric Acid. Langmuir, 2012. 28(13): p. 5850–5860.
  • 50. Zhang, S., J. Zhu, Y. Qing, L. Wang, J. Zhao, J. Li, W. Tian, D. Jia and Z. Fan. Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Advanced Functional Materials, 2018. 28(52): p. 1805898.
  • 51. Jiang, Y., J. Li, Z. Jiang, M. Shi, R. Sheng, Z. Liu, S. Zhang, Y. Cao, T. Wei and Z. Fan. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon, 2021. 175: p. 281–288.
There are 51 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Material Production Technologies
Journal Section Research Articles
Authors

Mehmet Emin Ergün 0000-0002-9938-7561

Saban Bulbul 0000-0002-9268-1469

Publication Date December 15, 2022
Submission Date August 12, 2022
Acceptance Date November 23, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Ergün, M. E., & Bulbul, S. (2022). Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. International Advanced Researches and Engineering Journal, 6(3), 167-175. https://doi.org/10.35860/iarej.1161044
AMA Ergün ME, Bulbul S. Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. Int. Adv. Res. Eng. J. December 2022;6(3):167-175. doi:10.35860/iarej.1161044
Chicago Ergün, Mehmet Emin, and Saban Bulbul. “Production and Characterization of Activated Carbon from Black Poplar (Populus Nigra) Wood Waste With Different Chemical Activation Methods”. International Advanced Researches and Engineering Journal 6, no. 3 (December 2022): 167-75. https://doi.org/10.35860/iarej.1161044.
EndNote Ergün ME, Bulbul S (December 1, 2022) Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. International Advanced Researches and Engineering Journal 6 3 167–175.
IEEE M. E. Ergün and S. Bulbul, “Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods”, Int. Adv. Res. Eng. J., vol. 6, no. 3, pp. 167–175, 2022, doi: 10.35860/iarej.1161044.
ISNAD Ergün, Mehmet Emin - Bulbul, Saban. “Production and Characterization of Activated Carbon from Black Poplar (Populus Nigra) Wood Waste With Different Chemical Activation Methods”. International Advanced Researches and Engineering Journal 6/3 (December 2022), 167-175. https://doi.org/10.35860/iarej.1161044.
JAMA Ergün ME, Bulbul S. Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. Int. Adv. Res. Eng. J. 2022;6:167–175.
MLA Ergün, Mehmet Emin and Saban Bulbul. “Production and Characterization of Activated Carbon from Black Poplar (Populus Nigra) Wood Waste With Different Chemical Activation Methods”. International Advanced Researches and Engineering Journal, vol. 6, no. 3, 2022, pp. 167-75, doi:10.35860/iarej.1161044.
Vancouver Ergün ME, Bulbul S. Production and characterization of activated carbon from Black Poplar (Populus Nigra) wood waste with different chemical activation methods. Int. Adv. Res. Eng. J. 2022;6(3):167-75.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.