Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 1, 99 - 121, 15.05.2025
https://doi.org/10.26650/ibr.2025.54.1470756

Abstract

References

  • Alam, M. S., Hossain, A. K. M. B., & Mohamed, F. (2022). Performance Evaluation of Recurrent Neural Networks for Indoor Camera Localization. International Journal of Emerging Technology and Advanced Engineering, 12(8), 116–124. https://doi.org/10.46338/ ijetae0822_15 google scholar
  • Araci, D. T. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. Retrieved from https://arxiv.org/abs/1908. 10063v1. google scholar
  • Bharathabau, K., Saurav, Vishal. (2023). Prediction and Sentiment Analysis of Stocks using Machine Learning. International Journal For Science Technology And Engineering, 11(5):6512-6519. doi: 10.22214/ijraset.2023.53169 google scholar
  • Bouktif, S., Fiaz, A., and Awad, M. (2020). Augmented Textual Features Based Stock Market Prediction. IEEE Access, PP, 1. https://doi.org/ 10.1109/ACCESS.2020.2976725 google scholar
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? This is an argument against avoiding RMSE. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014~ google scholar
  • Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623 google scholar
  • Costola, M., Hinz, O., Nofer, M., & Pelizzon, L. (2023). Machine learning sentiment analysis of COVID-19 news and stock market reactions. google scholar
  • Research in International Business and Finance, 64, 101881. https://doi.org/10.1016/J.RIBAF.2023.101881 google scholar
  • Cui, H., ZhU, Y., Gu, F., & Wang, L. (2022). Research on stock price prediction using TextRank based text summarization technology and sentiment analysis. 2022 18th International Conference on Computational Intelligence and Security (CIS), 302-306. https://doi.org/ 10.1109/CIS58238.2022.00070 google scholar
  • Gössi, S., Chen, Z., Kim, W., Bermeitinger, B., & Handschuh, S. (2023). FinBERT-FOMC: Fine-Tuned FinBERT Model with Sentiment Focus Method for Enhancing Sentiment Analysis of FOMC Minutes. ICAIF 2023 - 4th ACM International Conference on AI in Finance, 357– 364. https://doi.org/10.1145/3604237.3626843 google scholar
  • Gujjar, P. and Kumar, H. R. P. (2020). Opinion mining for the customer feedback using textbook. Int J Sci Res Comput Sci Eng Inform Technol, 72-76. https://doi.org/10.32628/CSEIT206418 google scholar
  • Hajek, P., Novotny, J. and Kovarnik, J. (2022). Predicting Exchange Rate with FinBERT-Based Sentiment Analysis of Online News. ACM International Conference Proceeding Series, 133–138. https://doi.org/10.1145/3572647.3572667 google scholar
  • Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022 google scholar
  • Kaeley, H., Qiao, Y., & Bagherzadeh, N. (2023). Support for Stock Trend Prediction Using Transformers and Sentiment Analysis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.14368 google scholar
  • Kalyani, J.; Bharathi, Prof. H. N.; Jyothi, Prof. R. (2016). Stock trend prediction using news sentiment analysis. International Journal of Computer Science and Information Technology, 8(3), 67–76. https://doi.org/10.5121/ijcsit.2016.8306 google scholar
  • Karimova L, Rakhmetulayeva S. (2023). Application of the Algorithm to Analyze Stock Prices Based on Sentiment Analysis. Cyst 2023-2023 IEEE International Conference on Smart Information Systems and Technologies, Proceedings, 214–220. https://doi.org/10.1109/SIST 58284.2023.10223583 google scholar
  • Kazemian, S., Zhao, S., & Penn, G. (2016). Evaluating Sentiment Analysis in the Context of Securities Trading. https://doi.org/10.18653/v 1/P16-1197 google scholar
  • Keen, P., Honnibal, M., Yankovsky, R., Karesh, D., Dempsey, E., Childs, W., Schnur, J., Qalieh, A., Ragnarsson, L., Coe, J. L., Calvo, A., Kulshrestha, N., Eslava, J., Albert, J., Harden, google scholar
  • Kovacs, Z., Kantor, D. B., & Fekete, A. (2008). Comparison of quantitative determination techniques with electronic tongue measurements. American Society of Agricultural and Biological Engineers Annual International Meeting, 2008; ASABE 2008, 11, 6603–6615. google scholar
  • Kurniawan, F., Sulaiman, S., Konate, S., & Abdalla, M. A. A. (2023). Deep-Learning Approaches for MIMO Time-Series Analysis. International Journal of Advances in Intelligent Informatics, 9(2), 286. https://doi.org/10.26555/ijain.v9i2.1092 google scholar
  • Liu, J. X., Leu, J. S., & Holst, S. (2023). Stock price movement prediction based on Stocktwits investor sentiment using FinBERT and ensemble SVM. PeerJ Computer Science, 9, e1403. https://doi.org/10.7717/peerj-cs.1403 google scholar
  • Liu, Q., Lee, W. S., Huang, M., & Wu, Q. (2023). Synergy between stock prices and investor sentiment in social media. Borsa Istanbul Review, 23(1), 76–92. https://doi.org/10.1016/j.bir.2022.09.006 google scholar
  • Loria, S. (2013). TextBlob: Simplified text processing [GitHub repository]. GitHub. https://github.com/sloria/textblob google scholar
  • Ma, H., Ma, J., Wang, M. H., Li, P., & Du, W. (2021). A Comprehensive Review of Investor Sentiment Analysis in Stock Price Forecasting. https://doi.org/10.1109/ICISFall51598.2021.9627470 google scholar
  • Pali, Kalpana, ve Laxmikant Tiwari. “Predictive Learning and Career Path Using Artificial Intelligence”. 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, IEEE, 2024, ss. 1-9. DOI.org (Crossref), https://doi.org/10.1109/OTCON60325.2024.10688178. google scholar
  • Palomino, M. A., Varma, A. P., Bedala, G. K., & Connelly, A. (2020). The Lack of Consensus Among Sentiment Analysis Tools. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12598 LNAI, 58–72. https://doi.org/10.1007/978-3-030-66527-2_5 google scholar
  • Ridhawi, M. A., & Osman, H. A. (2023). We predict stock markets from sentiment and financial stock data using machine learning. Proceedings of the Canadian Conference on Artificial Intelligence. https://doi.org/10.21428/594757db.40c1a462 google scholar
  • Robeson, S. M., and Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE, 18(2 February). https://doi.org/10.1371/journal.pone.0279774 google scholar
  • Saxena, A., Jain, A., Sharma, P., Singla, S., & Ticku, A. (2023). Sentiment Analysis of Stocks Based on News Headlines Using NLP (pp. 124– 135). https://doi.org/10.2991/978-94-6463-074-9_12 google scholar
  • Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. From: https://scikit-learn.org/dev/modules/ generated/sklearn.metrics.r2_score.html google scholar
  • Sharaf, M., Hemdan, E. E. D., El-Sayed, A., & El-Bahnasawy, N. A. (2023). An efficient hybrid stock trend prediction system during the COVID-19 pandemic based on stacked-LSTM and news sentiment analysis. Multimedia Tools and Applications, 82(16), 23945–23977. https://doi.org/10.1007/S11042-022-14216-W/TABLES/9 google scholar
  • Štrimaitis, R., Stefanovič, P., Ramanauskaitė, S., & Slotkienė, A. (2021). Financial Context News Sentiment Analysis for the Lithuanian Language. Applied Sciences, 11(10), 4443. https://doi.org/10.3390/APP11104443 google scholar
  • Varija, B., & Hegde, N. P. (2024). An Automated Analytics Framework for Stock Trend Analysis from Multi-Modal Data. International Journal of Electronics and Communication Engineering, Volume 11(1), 116–130. https://doi.org/10.14445/23488549/IJECE-V11I1P109 google scholar
  • Wang, Y. (2023). Stock prediction using polyglot sentiment analysis on Twitter. Journal of Student Research, 12(2). https://doi.org/10. 47611/jsr.v12i2.1910 google scholar
  • Willmott, C. J., & Matsuura, K. (2005). Advantages of mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/cr030079 google scholar
  • Willmott, C. J., Matsuura, K., & Robeson, S. M. (2009). Ambiguities inherent in sum-of-squares-based error statistics. Atmospheric Environment, 43(3), 749–752. https://doi.org/10.1016/j.atmosenv.2008.10.005 google scholar
  • Xiao, Q., & Ihnaini, B. (2023). Stock trend prediction using sentiment analysis. PeerJ Computer Science, 9, e1293. https://doi.org/10.7717/ peerj-cs.1293 google scholar
  • Yang, M., Zhang, Y., & Ai, Y. (2023). Short‐term Electricity Load Forecasting Based on Improved Sparrow Search Algorithm With Optimized BiLSTM. Advanced Control for Applications Engineering and Industrial Systems, 6(2). https://doi.org/10.1002/adc2.160 google scholar
  • Yang, Y., Christopher, M., UY, S., & Huang, A. (2020). FinBERT: A Pretrained Language Model for Financial Communications. In Github. google scholar
  • Yang, Yaqi, vd. “PRIME: Posterior Reconstruction of the Input for Model Explanations”. Pattern Recognition Letters, c. 176, Aralık 2023, ss. 202-08. DOI.org (Crossref), https://doi.org/10.1016/j.patrec.2023.11.009. google scholar
  • Yekrangi, M., & Nikolov, N. S. (2023). Domain-Specific Sentiment Analysis: An Optimized Deep Learning Approach for the Financial Markets. IEEE Access, 11, 70248–70262. https://doi.org/10.1109/ACCESS.2023.3293733 google scholar
  • Yeoh, E. D., Chung, T., & Wang, Y. (2023). Predicting price trends using sentiment analysis: A study of socialfi and gamezi cryptocurrencies. Contemporary Mathematics, 1089-1108. https://doi.org/10.37256/cm.4420232572 google scholar
  • Zhang, H., Xu, J., Lei, L., Qiu, J., & Al-Shalabi, R. (2022). A Sentiment Analysis Method Based on Bidirectional Long Short-Term Memory Networks. Applied Mathematics and Nonlinear Sciences, 8(1), 55–68. https://doi.org/10.2478/amns.2022.1.00015 google scholar
  • Zuleaizal, S., Noor, H., Ibrahim, T. (2023). We associate deep learning and the news headlines sentiment for Bursa stock prices. Indonesian Journal of Electrical Engineering and Computer Science, 31(2):1041-1041. doi: https://doi.org/10.11591/ijeecs.v31.i2.pp1041-1049 google scholar

Integrating market sentiments for stock price prediction: A comparative study of Bi-LSTM and multilayer perceptions

Year 2025, Volume: 54 Issue: 1, 99 - 121, 15.05.2025
https://doi.org/10.26650/ibr.2025.54.1470756

Abstract

This study investigates the integration of sentiment analysis with machine learning models to forecast stock price movements using the Nvidia Corporation as a case study. Sentiment scores were derived from Nvidia-related financial news headlines using two sentiment analysis tools: FinBERT, a domain-specific tool, and TextBlob, a general-purpose tool. These scores were integrated into predictive frameworks based on bidirectional long short-term memory (Bi-LSTM) networks and multilayer perceptrons (MLPs) developed alongside historical stock price data. This study assesses the predictive performance over the entire observation period and across distinct market phases: bullish, stagnation, and strong bullish conditions. The findings indicate that sentiment features enhance predictive accuracy in specific contexts, particularly during stagnation phases, with TextBlob demonstrating superior performance to FinBERT in specific scenarios. In addition, Bi-LSTM models exhibit consistently superior performance in capturing temporal dependencies compared to MLPs. However, the impact of sentiment features diminished during strongly directional trends, such as those observed in strong bullish markets. The combination of FinBERT and TextBlob in the same dataset allows for a dual-perspective approach to sentiment analysis, thereby providing new insights into the dynamic relationship between market sentiment and stock price behavior. This research contributes to the existing literature on applying sentiment analysis to financial forecasting by advancing the integration of complementary sentiment tools and phase-specific evaluations.

References

  • Alam, M. S., Hossain, A. K. M. B., & Mohamed, F. (2022). Performance Evaluation of Recurrent Neural Networks for Indoor Camera Localization. International Journal of Emerging Technology and Advanced Engineering, 12(8), 116–124. https://doi.org/10.46338/ ijetae0822_15 google scholar
  • Araci, D. T. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. Retrieved from https://arxiv.org/abs/1908. 10063v1. google scholar
  • Bharathabau, K., Saurav, Vishal. (2023). Prediction and Sentiment Analysis of Stocks using Machine Learning. International Journal For Science Technology And Engineering, 11(5):6512-6519. doi: 10.22214/ijraset.2023.53169 google scholar
  • Bouktif, S., Fiaz, A., and Awad, M. (2020). Augmented Textual Features Based Stock Market Prediction. IEEE Access, PP, 1. https://doi.org/ 10.1109/ACCESS.2020.2976725 google scholar
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? This is an argument against avoiding RMSE. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014~ google scholar
  • Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623 google scholar
  • Costola, M., Hinz, O., Nofer, M., & Pelizzon, L. (2023). Machine learning sentiment analysis of COVID-19 news and stock market reactions. google scholar
  • Research in International Business and Finance, 64, 101881. https://doi.org/10.1016/J.RIBAF.2023.101881 google scholar
  • Cui, H., ZhU, Y., Gu, F., & Wang, L. (2022). Research on stock price prediction using TextRank based text summarization technology and sentiment analysis. 2022 18th International Conference on Computational Intelligence and Security (CIS), 302-306. https://doi.org/ 10.1109/CIS58238.2022.00070 google scholar
  • Gössi, S., Chen, Z., Kim, W., Bermeitinger, B., & Handschuh, S. (2023). FinBERT-FOMC: Fine-Tuned FinBERT Model with Sentiment Focus Method for Enhancing Sentiment Analysis of FOMC Minutes. ICAIF 2023 - 4th ACM International Conference on AI in Finance, 357– 364. https://doi.org/10.1145/3604237.3626843 google scholar
  • Gujjar, P. and Kumar, H. R. P. (2020). Opinion mining for the customer feedback using textbook. Int J Sci Res Comput Sci Eng Inform Technol, 72-76. https://doi.org/10.32628/CSEIT206418 google scholar
  • Hajek, P., Novotny, J. and Kovarnik, J. (2022). Predicting Exchange Rate with FinBERT-Based Sentiment Analysis of Online News. ACM International Conference Proceeding Series, 133–138. https://doi.org/10.1145/3572647.3572667 google scholar
  • Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022 google scholar
  • Kaeley, H., Qiao, Y., & Bagherzadeh, N. (2023). Support for Stock Trend Prediction Using Transformers and Sentiment Analysis. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.14368 google scholar
  • Kalyani, J.; Bharathi, Prof. H. N.; Jyothi, Prof. R. (2016). Stock trend prediction using news sentiment analysis. International Journal of Computer Science and Information Technology, 8(3), 67–76. https://doi.org/10.5121/ijcsit.2016.8306 google scholar
  • Karimova L, Rakhmetulayeva S. (2023). Application of the Algorithm to Analyze Stock Prices Based on Sentiment Analysis. Cyst 2023-2023 IEEE International Conference on Smart Information Systems and Technologies, Proceedings, 214–220. https://doi.org/10.1109/SIST 58284.2023.10223583 google scholar
  • Kazemian, S., Zhao, S., & Penn, G. (2016). Evaluating Sentiment Analysis in the Context of Securities Trading. https://doi.org/10.18653/v 1/P16-1197 google scholar
  • Keen, P., Honnibal, M., Yankovsky, R., Karesh, D., Dempsey, E., Childs, W., Schnur, J., Qalieh, A., Ragnarsson, L., Coe, J. L., Calvo, A., Kulshrestha, N., Eslava, J., Albert, J., Harden, google scholar
  • Kovacs, Z., Kantor, D. B., & Fekete, A. (2008). Comparison of quantitative determination techniques with electronic tongue measurements. American Society of Agricultural and Biological Engineers Annual International Meeting, 2008; ASABE 2008, 11, 6603–6615. google scholar
  • Kurniawan, F., Sulaiman, S., Konate, S., & Abdalla, M. A. A. (2023). Deep-Learning Approaches for MIMO Time-Series Analysis. International Journal of Advances in Intelligent Informatics, 9(2), 286. https://doi.org/10.26555/ijain.v9i2.1092 google scholar
  • Liu, J. X., Leu, J. S., & Holst, S. (2023). Stock price movement prediction based on Stocktwits investor sentiment using FinBERT and ensemble SVM. PeerJ Computer Science, 9, e1403. https://doi.org/10.7717/peerj-cs.1403 google scholar
  • Liu, Q., Lee, W. S., Huang, M., & Wu, Q. (2023). Synergy between stock prices and investor sentiment in social media. Borsa Istanbul Review, 23(1), 76–92. https://doi.org/10.1016/j.bir.2022.09.006 google scholar
  • Loria, S. (2013). TextBlob: Simplified text processing [GitHub repository]. GitHub. https://github.com/sloria/textblob google scholar
  • Ma, H., Ma, J., Wang, M. H., Li, P., & Du, W. (2021). A Comprehensive Review of Investor Sentiment Analysis in Stock Price Forecasting. https://doi.org/10.1109/ICISFall51598.2021.9627470 google scholar
  • Pali, Kalpana, ve Laxmikant Tiwari. “Predictive Learning and Career Path Using Artificial Intelligence”. 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, IEEE, 2024, ss. 1-9. DOI.org (Crossref), https://doi.org/10.1109/OTCON60325.2024.10688178. google scholar
  • Palomino, M. A., Varma, A. P., Bedala, G. K., & Connelly, A. (2020). The Lack of Consensus Among Sentiment Analysis Tools. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12598 LNAI, 58–72. https://doi.org/10.1007/978-3-030-66527-2_5 google scholar
  • Ridhawi, M. A., & Osman, H. A. (2023). We predict stock markets from sentiment and financial stock data using machine learning. Proceedings of the Canadian Conference on Artificial Intelligence. https://doi.org/10.21428/594757db.40c1a462 google scholar
  • Robeson, S. M., and Willmott, C. J. (2023). Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE, 18(2 February). https://doi.org/10.1371/journal.pone.0279774 google scholar
  • Saxena, A., Jain, A., Sharma, P., Singla, S., & Ticku, A. (2023). Sentiment Analysis of Stocks Based on News Headlines Using NLP (pp. 124– 135). https://doi.org/10.2991/978-94-6463-074-9_12 google scholar
  • Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. From: https://scikit-learn.org/dev/modules/ generated/sklearn.metrics.r2_score.html google scholar
  • Sharaf, M., Hemdan, E. E. D., El-Sayed, A., & El-Bahnasawy, N. A. (2023). An efficient hybrid stock trend prediction system during the COVID-19 pandemic based on stacked-LSTM and news sentiment analysis. Multimedia Tools and Applications, 82(16), 23945–23977. https://doi.org/10.1007/S11042-022-14216-W/TABLES/9 google scholar
  • Štrimaitis, R., Stefanovič, P., Ramanauskaitė, S., & Slotkienė, A. (2021). Financial Context News Sentiment Analysis for the Lithuanian Language. Applied Sciences, 11(10), 4443. https://doi.org/10.3390/APP11104443 google scholar
  • Varija, B., & Hegde, N. P. (2024). An Automated Analytics Framework for Stock Trend Analysis from Multi-Modal Data. International Journal of Electronics and Communication Engineering, Volume 11(1), 116–130. https://doi.org/10.14445/23488549/IJECE-V11I1P109 google scholar
  • Wang, Y. (2023). Stock prediction using polyglot sentiment analysis on Twitter. Journal of Student Research, 12(2). https://doi.org/10. 47611/jsr.v12i2.1910 google scholar
  • Willmott, C. J., & Matsuura, K. (2005). Advantages of mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82. https://doi.org/10.3354/cr030079 google scholar
  • Willmott, C. J., Matsuura, K., & Robeson, S. M. (2009). Ambiguities inherent in sum-of-squares-based error statistics. Atmospheric Environment, 43(3), 749–752. https://doi.org/10.1016/j.atmosenv.2008.10.005 google scholar
  • Xiao, Q., & Ihnaini, B. (2023). Stock trend prediction using sentiment analysis. PeerJ Computer Science, 9, e1293. https://doi.org/10.7717/ peerj-cs.1293 google scholar
  • Yang, M., Zhang, Y., & Ai, Y. (2023). Short‐term Electricity Load Forecasting Based on Improved Sparrow Search Algorithm With Optimized BiLSTM. Advanced Control for Applications Engineering and Industrial Systems, 6(2). https://doi.org/10.1002/adc2.160 google scholar
  • Yang, Y., Christopher, M., UY, S., & Huang, A. (2020). FinBERT: A Pretrained Language Model for Financial Communications. In Github. google scholar
  • Yang, Yaqi, vd. “PRIME: Posterior Reconstruction of the Input for Model Explanations”. Pattern Recognition Letters, c. 176, Aralık 2023, ss. 202-08. DOI.org (Crossref), https://doi.org/10.1016/j.patrec.2023.11.009. google scholar
  • Yekrangi, M., & Nikolov, N. S. (2023). Domain-Specific Sentiment Analysis: An Optimized Deep Learning Approach for the Financial Markets. IEEE Access, 11, 70248–70262. https://doi.org/10.1109/ACCESS.2023.3293733 google scholar
  • Yeoh, E. D., Chung, T., & Wang, Y. (2023). Predicting price trends using sentiment analysis: A study of socialfi and gamezi cryptocurrencies. Contemporary Mathematics, 1089-1108. https://doi.org/10.37256/cm.4420232572 google scholar
  • Zhang, H., Xu, J., Lei, L., Qiu, J., & Al-Shalabi, R. (2022). A Sentiment Analysis Method Based on Bidirectional Long Short-Term Memory Networks. Applied Mathematics and Nonlinear Sciences, 8(1), 55–68. https://doi.org/10.2478/amns.2022.1.00015 google scholar
  • Zuleaizal, S., Noor, H., Ibrahim, T. (2023). We associate deep learning and the news headlines sentiment for Bursa stock prices. Indonesian Journal of Electrical Engineering and Computer Science, 31(2):1041-1041. doi: https://doi.org/10.11591/ijeecs.v31.i2.pp1041-1049 google scholar
There are 44 citations in total.

Details

Primary Language English
Subjects Behavioural Finance
Journal Section Research Article
Authors

Ahmet Akusta 0000-0002-5160-3210

Submission Date April 19, 2024
Acceptance Date April 9, 2025
Publication Date May 15, 2025
Published in Issue Year 2025 Volume: 54 Issue: 1

Cite

APA Akusta, A. (2025). Integrating market sentiments for stock price prediction: A comparative study of Bi-LSTM and multilayer perceptions. Istanbul Business Research, 54(1), 99-121. https://doi.org/10.26650/ibr.2025.54.1470756

For more information about IBR and recent publications, please visit us at IU Press.