Research Article
BibTex RIS Cite

Exploring market efficiency in cryptocurrencies: Fourier analysis of non-linear dynamics and breaks

Year 2025, Volume: 54 Issue: 3, 374 - 389, 31.12.2025
https://doi.org/10.26650/ibr.2025.54.1666799
https://izlik.org/JA38YN28ZK

Abstract

This study evaluates cryptocurrency market efficiency through an analysis of 25 leading cryptocurrencies traded between 2014 and 2024. This research employs the Augmented Dickey–Fuller (ADF) test and its Fourier-augmented variant (Fourier ADF, FADF), the Kapetanios–Shin–Snell (KSS) test, and its Fourieraugmented counterpart (Fourier KSS, FKSS) as advanced econometric methods to detect unit roots and to assess whether these assets conform to the weak-form Efficient Market Hypothesis (EMH). The research obtained data from Yahoo Finance through web scraping to perform a detailed analysis of price movements, market behavior, and structural changes. Some cryptocurrencies show efficient market behavior, whereas numerous others demonstrate non-linear patterns, structural breaks, and price predictability, indicating market inefficiencies. The findings of this study have major implications for investors and policymakers because they demonstrate the need to analyze cyclical patterns and nonlinear market behaviors in cryptocurrency markets. This research extends current knowledge by using Fourier-based tests to detect smooth breaks, which provides a more detailed understanding of the efficiency of the cryptocurrency market.

References

  • Akbar, M., Ullah, I., and Rehman, N. (2024). Adaptive market hypothesis: a comparison of Islamic and conventional stock indices. International Review of Economics and Finance, 89, 460-477. https://doi.org/10.1016/j.iref.2023.06.020 google scholar
  • Ananzeh, I. N. and AL-Smadi, M. O. (2023). Inspecting the efficiency of cryptocurrency markets: new evidence. Asian Economic and Financial Review, 14(1), 29-42. https://doi.org/10.55493/5002.v14i1.4941 google scholar
  • Bahmani-Oskooee, M., Chang, T., Niroomand, F., and Ranjbar, O. (2020). Fourier nonLinear quantile unit root test and PPP in Africa. Bulletin of Economic Research, 72(4), 451-481. https://doi.org/10.1111/boer.12230 google scholar
  • Bouteska, A. and Regaieg, B. (2020). Loss aversion, overconfidence of investors and their impact on market performance evidence from the US stock markets. Journal of Economics, Finance and Administrative Science, 25(50), 451-478. https://doi.org/10.1108/jefas-07-2017-0081 google scholar
  • Broock, W. A., Scheinkman, J. A., Dechert, W. D. and LeBaron, B. (1996). A test for independence based on the correLation dimension. Econometric Reviews, 15(3), 197-235. google scholar
  • Canarella, G., Gupta, R., Miller, S. M., and Omay, T. (2019). Does reaL U.K. GDP have a unit root? evidence from a multi-century perspective. Applied Economics, 52(10), 1070-1087. https://doi.org/10.1080/00036846.2019.1655138 google scholar
  • Choi, I. (1992). Effects of data aggregation on the power of tests for a unit root: a simuLation studY. Economics Letters, 40(4), 397-401. google scholar
  • ChristopouLos, D. K. and Leon-Ledesma, M. A. (2010). Smooth breaks and non-Linear mean reversion: Post-Bretton Woods reaL exchange rates. Journal of International Money and Finance, 29(6), 1076-1093. google scholar
  • Corbet, S., Larkin, C., LuceY, B. M., Meegan, A., and YarovaYa, L. (2020). The impact of macroeconomic news on bitcoin returns. The European Journal of Finance, 26(14), 1396-1416. https://doi.org/10.1080/1351847x.2020.1737168 google scholar
  • Cuestas, J. C. and Ordonez, J. (2014). Smooth transitions, asymmetric adjustment and unit roots. Applied Economics Letters, 21(14), 969-972. https://doi.org/10.1080/13504851.2014.902016 google scholar
  • DickeY, D. A. and FuLLer, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431. google scholar
  • Enders, W. and Lee, J. (2011). A unit root test using a Fourier series to approximate smooth breaks*. Oxford Bulletin of Economics and Statistics, 74(4), 574-599. https://doi.org/10.1111/j.1468-0084.2011.00662.x google scholar
  • Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and EmpiricaL Work, The Journal of Finance, 25(2), 383-417. google scholar
  • Fernandes, L. H., Bouri, E., SiLva, J. W. L., Bejan, L., and Araujo, F. H. A. d. (2022). The resilience of cryptocurrency market efficiency to COVID-19 shock. Physica A: Statistical Mechanics and Its Applications, 607, 128218. https://doi.org/10.1016/j.phYsa.2022.128218 google scholar
  • Fonseca, V. N. d. C. A., Pacheco, L. M., and Lobâo, J. (2019). PsYchoLogical barriers in the cıyptocurrency market. Review of Behavioral Finance, 12(2), 151-169. https://doi.org/10.1108/rbf-03-2019-0041 google scholar
  • Jarque, C. M. and Bera, A. K. (1987). A test for normaLitY of observations and regression residuaLs. International Statistical Review/Revue Internationale de Statistique, 55(2), 163-172. google scholar
  • Jannati, N., SuLtana, N., and RaYhan, M. (2013). Are the reaL gdp series in asian countries nonstationary or nonlinear stationary?. Russian Journal of Agricultural and Socio-Economic Sciences, 18(6), 8-14. https://doi.org/10.18551/rjoas.2013-06.02 google scholar
  • Ji, Q., RippLe, R. D., Zhang, D., and Zhao, Y. (2022). Cryptocurrency bubble on the systemic risk in global energy companies. The Energy Journal, 43(1), 1-24. https://doi.org/10.5547/01956574.43.si1.qiji google scholar
  • Kahneman, D. (2003). Maps of bounded rationality: Economist psychology for behavioral. American Economic Review, 93(5), 1449-1475. https://doi.org/10.1257/000282803322655392. google scholar
  • KhaLiL, F. and Pipa, G. (2021). Is deep-Learning and naturaL Language processing transcending the financiaL forecasting? investigation through Lens of news anaLYtic process. Computational Economics, 60(1), 147-171. https://doi.org/10.1007/s10614-021-10145-2 google scholar
  • Kapetanios, G., Shin, Y. and SneLL, A. (2003) Testing for a unit root in the nonLinear STAR framework, Journal of Econometrics, 112, 35979. doi:10.1016/S0304-4076(02)00202-6 google scholar
  • KavkLer, A., Borsic, D., and Beko, J. (2016). Is the PPP vaLid for the ea-11 countries? new evidence from nonLinear unit root tests. Economic Research-Ekonomska Istrazivanja, 29(l), 612-622. https://doi.org/l0.1080/l331677x.2016.1189842 google scholar
  • Khursheed, A., Naeem, M., Ahmed, S., and Mustafa, F. (2020). Adaptive market hYpothesis: an empiricaL anaLYsis of time-varYing market efficiencY of crYptocurrencies. Cogent Economics and Finance, 8(1), 1719574. https://doi.org/10.1080/23322039.2020.1719574 google scholar
  • Kruse, R. (2009). A new unit root test against estar based on a cLass of modified statistics. Statistical Papers, 52(1), 71-85. https://doi. org/10.1007/s00362-009-0204-1 google scholar
  • Lawal, A. I., Babajide, A. A., Nwanji, T. I., and Eluyela, D. F. (2018). Untitled. International Journal of Energy Economics and Policy, 8(6). https://doi.org/10.32479/ijeep.6980 google scholar
  • Li, T., DaLen, J. v., and Rees, P. J. v. (2018). More than just noise? examining the information content of stock microbLogs on financiaL markets. JournaL of Information TechnoLogY, 33(1), 50-69. https://doi.org/10.1057/s41265-016-0034-2 google scholar
  • Lim, K. and Brooks, R. D. (2011). The evoLution of stock market efficiencY over time: a surveY of the empiricaL Literature. Journal of Economic Surveys, 25(1), 69-108. https://doi.org/10.1111/j.1467-6419.2009.00611.x google scholar
  • Lo, Andrew W. (2004). The Adaptive Markets HYpothesis. The Journal of Portfolio Management, 30, 15-29. google scholar
  • MaLkieL, B. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59-82. https://doi.org/10. 1257/089533003321164958 google scholar
  • Nadarajah, S. and Chu, J. (2017). On the inefficiencY of bitcoin. Economics Letters, 150, 6-9. https://doi.org/10.1016/j.econLet.2016.10.033 google scholar
  • NazLiogLu, S. (2021). “TSPDLIB: GAUSS Time Series and Panel Data Methods (Version 2.1): Source Code. https://github. com/aptech/tspdlib (accessed ApriL 2022) google scholar
  • Requests-HTML. (2024). Requests-HTML: HTML Parsing for Humans™. GitHub. Retrieved August 29, 2024, from https://github.com/psf/ requests-htmL google scholar
  • Rodrigues, P. M. M. and TaYLor, A. M. R. (2011). The flexible Fourier form and Local generaLized Least squares de-trended unit root tests*. Oxford Bulletin of Economics and Statistics, 74(5), 736-759. https://doi.org/10.1111/j.1468-0084.2011.00665.x google scholar
  • Said, B., Rehman, S. U., ULLah, R., and Khan, J. (2021). Investor overreaction and gLobaL financiaL crisis: a case of Pakistan stock exchange. Cogent Economics and Finance, 9(1). https://doi.org/10.1080/23322039.2021.1966195 google scholar
  • ScheufeLe, B., Haas, A., and Brosius, H. (2011). Mirror or moLder? a studY of media coverage, stock prices, and trading voLumes in GermanY. Journal of Communication, 61(1), 48-70. https://doi.org/10.1111/j.1460-2466.2010.01526.x google scholar
  • Sigaki, H. Y. D., Perc, M., and Ribeiro, H. V. (2019). CLustering patterns in efficiencY and the coming-of-age of the crYptocurrencY market. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-37773-3 google scholar
  • Ştefanescu, R. and Dumitriu, R. (2020). Changes of the time intervals specific to caLendar anomalies: the case of toq effect on Bucharest stock exchange. SSRN ELectronic Journal. https://doi.org/10.2139/ssrn.3682368 google scholar
  • Takaishi, T. (2022). Time evolution of market efficiency and multifractality of the Japanese stock market. Journal of Risk and Financial Management, 15(1), 31. https://doi.org/10.3390/jrfm15010031 google scholar
  • Xaba, D., Moroke, N., Arkaah, J., and Pooe, C. (2016). ModeLing South African banks cLosing stock prices: a Markov-switching approach. JournaL of Economics and BehavioraL Studies, 8(1(J)), 36-40. https://doi.org/10.22610/jebs.v8i1(j).1204 google scholar
  • Xia, Y., and Madni, G. R. (2024). Unleashing the behavioral factors affecting the decision making of Chinese investors in stock markets. Plos One, 19(2), e0298797. https://doi.org/10.1371/journal.pone.0298797 google scholar
  • Xu, J. (2021). An empirical analysis of the efficient market hypothesis in China’s stock market. Proceedings of Business and Economic Studies, 4(3), 1-5. https://doi.org/10.26689/pbes.v4i3.2179 google scholar
  • Yahoo Finance. (2024, September 08). Most active cryptocurrencies. Yahoo Finance. Retrieved from https://finance.Yahoo.com/markets/ crYpto/most-active/ google scholar
  • Yaya, O. S., Ogbonna, A. E., Mudida, R., and Abu, N. (2020). Market efficiency and volatility persistence of cıyptocurrency during pre- and post-crash periods of bitcoin: evidence based on fractional integration. International Journal of Finance and Economics, 26(l), 1318-1335. https://doi.org/10.1002/ijfe.1851 google scholar
  • Zhang, S. and Wen, F. (2021). Multifractal behaviors of stock indices and their abiLity to improve forecasting in a volatility clustering period. Entropy, 23(8), 1018. https://doi.org/10.3390/e23081018 google scholar
There are 44 citations in total.

Details

Primary Language English
Subjects Financial Econometrics
Journal Section Research Article
Authors

Cemal Öztürk 0000-0003-3850-7416

Submission Date March 27, 2025
Acceptance Date September 3, 2025
Publication Date December 31, 2025
DOI https://doi.org/10.26650/ibr.2025.54.1666799
IZ https://izlik.org/JA38YN28ZK
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA Öztürk, C. (2025). Exploring market efficiency in cryptocurrencies: Fourier analysis of non-linear dynamics and breaks. Istanbul Business Research, 54(3), 374-389. https://doi.org/10.26650/ibr.2025.54.1666799

For more information about IBR and recent publications, please visit us at IU Press.