Review
BibTex RIS Cite

YAPAY ZEKÂ VE RESİM KESİŞİMİNDE ALGORİTMALAR, TEKNİKLER VE TESPİT YÖNTEMLERİ

Year 2025, Volume: 8 Issue: 1, 25 - 39, 26.08.2025
https://doi.org/10.56809/icujtas.1523272

Abstract

Bu araştırma, yapay zekânın resim üzerindeki etkilerini algoritmalar, teknikler ve tespit yöntemleri kapsamında incelemektedir. Araştırmada, derin öğrenme ve generative adversarial networks (GAN) algoritmalarının resimsel stilleri, kompozisyonları ve renk paletlerini öğrenme ve yeni sanatsal formlar oluşturma yeteneği ile yapay zekâ (YZ) tarafından oluşturulan resimlerin tespitinde kullanılan yedi araç ve on adet yöntem incelenmiştir.
Bu kapsamda, alan yazın taramasıyla toplanan veriler, nitel araştırma yöntemlerinden karşılaştırmalı analiz ve mantıksal akıl yürütme yöntemleri kullanılarak yorumlanmış ve incelenen literatür ile sınırlandırılmıştır.
Bulgular, yapay sinir ağları ve derin öğrenme yöntemlerinin resimsel üretim ve analizde kritik rol oynadığını, görsel analiz yöntemlerinin ise dijital resimlerin detaylı incelenmesine olanak sağladığını göstermiştir. Sonuçlar ise bulgulara bağlı kalarak, YZ ve resim kesişiminde kullanılan algoritmaların üretim ve değerlendirme süreçlerinde önemli dönüşümler yarattığını ortaya koymuştur.

References

  • Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J. Y., & Torralba, A. (2020). Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727.
  • Boden, M. A. (2004). The creative mind: Myths and mechanisms. Routledge.
  • Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical science, 17(3), 235-255.
  • Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1872-1886.
  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58.
  • Colton, S. (2012). The painting fool: Stories from building an automated painter. In Computers and creativity (pp. 3-38). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Cozzolino, D., Poggi, G., & Verdoliva, L. (2017, June). Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In Proceedings of the 5th ACM workshop on information hiding and multimedia security (pp. 159-164).
  • Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
  • Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). Can: Creative adversarial networks, generating"art" by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.
  • M.A ÖZDAL YAPAY ZEKÂ VE RESİM KESİŞİMİNDE ALGORİTMALAR, TEKNİKLER VE TESPİT YÖNTEMLERİ
  • Fridrich, J. (2009). Digital image forensics. IEEE Signal Processing Magazine, 26(2), 26-37.
  • Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks.
  • In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414-2423).
  • Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
  • Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE international conference on computer vision (pp. 1501-1510).
  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Lowe, D. G. (1999, September). Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150-1157). Ieee.
  • McCorduck, P. (1991). Aaron's code: meta-art, artificial intelligence, and the work of Harold Cohen. Macmillan.
  • McCormack, J., Gifford, T., & Hutchings, P. (2019, April). Autonomy, authenticity, authorship and intention in computer generated art. In International conference on computational intelligence in music, sound, art and design (part of EvoStar) (pp. 35-50). Cham: Springer International Publishing.
  • Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going deeper into neural networks. Google research blog, 20(14), 5.
  • Nguyen, T. T., Nguyen, Q. V. H., Nguyen, D. T., Nguyen, D. T., Huynh-The, T., Nahavandi, S., ... & Nguyen, C. M. (2022). Deep learning for deepfakes creation and detection: A survey. Computer Vision and Image Understanding, 223, 103525.
  • Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
  • Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., ... & Sutskever, I. (2021, July). Zero-shot text- to-image generation. In International conference on machine learning (pp. 8821-8831). Pmlr.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
  • Siciliano, B., & Khatib, O. (2016). Robotics and the Handbook. In Springer Handbook of Robotics (pp. 1-6). Cham: Springer International Publishing.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
  • (Şanveren, M., & Kasapbaşı, M. C. (2024). Görüntüler İçin Alfa Kanalını Maskeleyerek Veri Gizleme Tekniği Ve Uygulaması. İstanbul Ticaret Üniversitesi Teknoloji Ve Uygulamalı Bilimler Dergisi, 6(2), 21-35. https://doi.org/10.56809/icujtas.1328818
  • Tresset, P., & Leymarie, F. F. (2013). Portrait drawing by Paul the robot. Computers & Graphics, 37(5), 348-363.
  • Wilson, S., & Berton, G. (2010). Art+ science. Thames & Hudson.
  • Zeid, I. (1991). CAD/CAM theory and practice. McGraw-Hill Higher Education.
  • Raum, S., & Skalski, A. (2023). Factorial multiparameter Hecke von Neumann algebras and representations of groups acting on right-angled buildings. Journal de Mathématiques Pures et Appliquées, 172, 265-298.
  • Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).

ALGORITHMS, TECHNIQUES AND DETECTION METHODS IN ARTIFICIAL INTELLIGENCE AND IMAGE INTERSECTION

Year 2025, Volume: 8 Issue: 1, 25 - 39, 26.08.2025
https://doi.org/10.56809/icujtas.1523272

Abstract

This research examines the effects of artificial intelligence on painting within the scope of algorithms, techniques and detection methods. In the research, seven tools and ten methods used in the detection of paintings created by artificial intelligence (AI) were examined, with the ability of deep learning and generative adversarial networks (GAN) algorithms to learn pictorial styles, compositions and color palettes and create new artistic forms. In this context, the data collected through literature review were interpreted using comparative analysis and logical reasoning methods, which are among the qualitative research methods, and were limited to the literature examined. Findings have shown that artificial neural networks and deep learning methods play a critical role in pictorial production and analysis, while visual analysis methods allow detailed examination of digital images. The results, adhering to the findings, revealed that the algorithms used at the intersection of AI and image created significant transformations in the production and evaluation processes.

References

  • Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J. Y., & Torralba, A. (2020). Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727.
  • Boden, M. A. (2004). The creative mind: Myths and mechanisms. Routledge.
  • Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical science, 17(3), 235-255.
  • Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1872-1886.
  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6), 679-698.
  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58.
  • Colton, S. (2012). The painting fool: Stories from building an automated painter. In Computers and creativity (pp. 3-38). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Cozzolino, D., Poggi, G., & Verdoliva, L. (2017, June). Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In Proceedings of the 5th ACM workshop on information hiding and multimedia security (pp. 159-164).
  • Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
  • Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). Can: Creative adversarial networks, generating"art" by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068.
  • M.A ÖZDAL YAPAY ZEKÂ VE RESİM KESİŞİMİNDE ALGORİTMALAR, TEKNİKLER VE TESPİT YÖNTEMLERİ
  • Fridrich, J. (2009). Digital image forensics. IEEE Signal Processing Magazine, 26(2), 26-37.
  • Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks.
  • In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414-2423).
  • Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
  • Huang, X., & Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE international conference on computer vision (pp. 1501-1510).
  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
  • Lowe, D. G. (1999, September). Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150-1157). Ieee.
  • McCorduck, P. (1991). Aaron's code: meta-art, artificial intelligence, and the work of Harold Cohen. Macmillan.
  • McCormack, J., Gifford, T., & Hutchings, P. (2019, April). Autonomy, authenticity, authorship and intention in computer generated art. In International conference on computational intelligence in music, sound, art and design (part of EvoStar) (pp. 35-50). Cham: Springer International Publishing.
  • Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going deeper into neural networks. Google research blog, 20(14), 5.
  • Nguyen, T. T., Nguyen, Q. V. H., Nguyen, D. T., Nguyen, D. T., Huynh-The, T., Nahavandi, S., ... & Nguyen, C. M. (2022). Deep learning for deepfakes creation and detection: A survey. Computer Vision and Image Understanding, 223, 103525.
  • Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
  • Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., ... & Sutskever, I. (2021, July). Zero-shot text- to-image generation. In International conference on machine learning (pp. 8821-8831). Pmlr.
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48.
  • Siciliano, B., & Khatib, O. (2016). Robotics and the Handbook. In Springer Handbook of Robotics (pp. 1-6). Cham: Springer International Publishing.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
  • (Şanveren, M., & Kasapbaşı, M. C. (2024). Görüntüler İçin Alfa Kanalını Maskeleyerek Veri Gizleme Tekniği Ve Uygulaması. İstanbul Ticaret Üniversitesi Teknoloji Ve Uygulamalı Bilimler Dergisi, 6(2), 21-35. https://doi.org/10.56809/icujtas.1328818
  • Tresset, P., & Leymarie, F. F. (2013). Portrait drawing by Paul the robot. Computers & Graphics, 37(5), 348-363.
  • Wilson, S., & Berton, G. (2010). Art+ science. Thames & Hudson.
  • Zeid, I. (1991). CAD/CAM theory and practice. McGraw-Hill Higher Education.
  • Raum, S., & Skalski, A. (2023). Factorial multiparameter Hecke von Neumann algebras and representations of groups acting on right-angled buildings. Journal de Mathématiques Pures et Appliquées, 172, 265-298.
  • Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Image Processing, Image and Video Coding
Journal Section Review
Authors

Mehmet Akif Özdal 0000-0003-3148-8988

Publication Date August 26, 2025
Submission Date July 27, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Özdal, M. A. (2025). YAPAY ZEKÂ VE RESİM KESİŞİMİNDE ALGORİTMALAR, TEKNİKLER VE TESPİT YÖNTEMLERİ. İstanbul Ticaret Üniversitesi Teknoloji Ve Uygulamalı Bilimler Dergisi, 8(1), 25-39. https://doi.org/10.56809/icujtas.1523272