Research Article
BibTex RIS Cite

MERKEZİ SİKLOKSİJENAZ ÜRÜNLERİ TXA2, PGF2α, PGE VE PGD’NİN OREKSİN’İN OLUŞTURDUĞU KARDİYOVASKÜLER ETKİLERDEKİ ARACILIĞI

Year 2021, , 251 - 266, 27.12.2021
https://doi.org/10.52538/iduhes.998711

Abstract

Merkezi olarak enjekte edilen bazı prostaglandinler (PG) ve oreksin (OX) benzer kardiyovasküler yanıtlara sahiptir. Yakın zamanda hem merkezi siklooksijenaz (COX) hem de merkezi lipoksijenaz enzimlerinin OX'nin kardiyovasküler etkilerine aracılık ettiğini bildirdik. Bu çalışmada, kardiyovasküler kontrolde aktif olduğu bilinen COX yolağı ürünleri tromboksan (TX) A2, PGD, PGE ve PGF2α'nın OX'in tarafından oluşturulan kardiyovasküler etkilerdeki aracılıklarını araştırmayı amaçladık. İntraserebroventriküler (i.c.v.) OX enjeksiyonu, normotansif erkek Sprague Dawley sıçanlarda kardiyovasküler yanıtları arttırdı. Ayrıca, TXA2 sentez inhibitörü furegrelate, PGF2α reseptör antagonisti, PGF2α-dimetilamin, PGE ve PGD reseptör antagonisti AH6809 ile merkezi ön tedavi, sıçanlarda merkezi olarak uygulanan OX ile indüklenen pressör ve taşikardik kardiyovasküler yanıtları kısmen zayıflattı. Sonuç olarak, verilerimiz i.c.v. OX enjeksiyonunun kan basıncını ve kalp atım hızını artırdığını göstermektedir. Ayrıca, TXA2, PGF2α, PGE ve PGD kısmende olsa, merkezi olarak uygulanan OX ile uyarılmış pressör ve taşikardik yanıtlara aracılık etmektedir. Sonuçlar, merkezi olarak enjekte edilen OX ile uyarılmış pressör ve taşikardik yanıtlara, TXA2, PGF2α, PGE ve PGD dışındaki araşidonik asit metabolitlerinin de aracılık edebileceğini göstermektedir.

Supporting Institution

Tübitak

Project Number

214O728

References

  • Al-Barazanji, K.A., Wilson, S., Baker, J., Jessop, D.S., Harbuz, M.S. (2001). Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic releasing factor and arginine vasopressin neurones in conscious rats. Journal of Neuroendocrinology, 13(5), 421-424.
  • Altinbas, B., Guvenc-Bayram, G., Yalcin, M. (2021). The mediation of central cyclooxygenase and lipoxygenase pathways in orexin-induced cardiovascular effects. Brain Research, 1754, 147239.
  • Antunes, V.R., Brailoiu, G.C., Kwok, E.H., Scruggs, P., Dun, N.J. (2001). Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. American journal of physiology. Regulatory, integrative and comparative physiology, 281(6), 1801-1807.
  • Ariumi, H., Takano, Y., Masumi, A., Takahashi, S., Hirabara, Y. et al. (2002). Roles of the central prostaglandin EP3 receptors in cardiovascular regulation in rats. Neuroscience Letters, 324(1), 61-64.
  • Beig, M.I., Dampney, B.W., Carrive, P. (2015). Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat. Neuropharmacology, 89, 146–156.
  • Cernak, I., Savić, J., Jovanović, M., Selaković, V. (1994). Brain PGD2 and PGE2 changes during posthaemorrhagic hypovolemia in rats. Vojnosanitetski pregled, 51(5), 363-375.
  • Ciriello, J., Li, Z., de Oliveira, C.V.R. (2003a). Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Research, 991(1-2), 84-95.
  • Ciriello, J., de Oliveira, C.V.R. (2003b). Cardiac effects of hypocretin-1 in nucleus ambiguus. American journal of physiology. Regulatory, integrative and comparative physiology, 284(6), 1611-1620.
  • Dampney, R.A. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiological reviews, 74(2), 323-364.
  • De Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E. et al. (1998). The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 95(1), 322-327.
  • Dun, N.J., Le Dun, S., Chen, C.T., Hwang, L.L., Kwok, E.H. et al. (2000). Orexins: a role in medullary sympathetic outflow. Regulatory peptides, 96 (1-2), 65-70.
  • Erkan, L.G., Altinbas, B., Guvenc, G., Aydin, B., Niaz, N. et al. (2017). The acute cardiorespiratory effects of centrally injected arachidonic acid; the mediation of prostaglandin E, D and F2α. Respiratory physiology and neurobiology, 242, 117-124.
  • Feuerstein, G., Adelberg, S.A., Kopin, I.J., Jacobowitz, D.M. (1982). Hypothalamic sites for cardiovascular and sympathetic modulation by prostaglandin E2. Brain Research, 231(2), 335-42.
  • Förstermann, U., Heldt, R., Hertting, G. (1983). Effects of intracerebroventricular administration of prostaglandin D2 on behaviour, blood pressure and body temperature as compared to prostaglandins E2 and F2 alpha. Psychopharmacology (Berl), 80(4), 365-370.
  • Förstermann, U., Heldt, R., Hertting, G. (1985). Studies on the mechanism of central cardiovascular and temperature responses to prostaglandin D2. Prostaglandins, leukotrienes, and medicine, 18(3), 301-308.
  • Girault, E.M., Yi, C.X., Fliers, E., Kalsbeek, A. (2012). Orexins, feeding, and energy balance. Progress in brain research, 198, 47–64.
  • Guvenc-Bayram, G., Altinbas, B., Iqbal, A., Cerci, E., Udum, D. et al. (2020). Intracerebroventricularly injected nesfatin-1 activates central cyclooxygenase and lipoxygenase pathways. Autonomic Neuroscience, 226, 102670.
  • Guyenet, P.G., Darnall, R.A., Riley, T.A. (1990). Rostral ventrolateral medulla and sympathorespiratory integration in rats. The American journal of physiology, 259(5 Pt 2), 1063-74.
  • Guyenet, P.G. (2006). The sympathetic control of blood pressure. Nature reviews. Neuroscience, 7(5), 335-346. Hoffman, W.E., Schmid, P.G. (1979). Cardiovascular and antidiuretic effects of central prostaglandin E2. The Journal of physiology, 288, 159–169.
  • Hoffman, W.E., Leavitt, M.L., Albrecht, R.F., Miletich, D.J. (1981). Central cardiovascular activity of prostaglandin E2, prostaglandin F2 alpha and prostacyclin. Prostaglandins, 21(6), 899-904.
  • Huang, S.C., Dai, Y.W., Lee, Y.H., Chiou, L.C., Hwang, L.L. (2010). Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. The Journal of pharmacology and experimental therapeutics, 334(2), 522-529.
  • Jochem, J. (2009). Orexin type 1 receptor antagonist SB 334867 inhibits the central histamine-induced resuscitating effect in rats subjected to haemorrhagic shock. Inflammation research : official journal of the European Histamine Research Society, 58(Suppl1), 36-7.
  • Kayaba, Y., Nakamura, A., Kasuya, Y., Ohuchi, T., Yanagisawa, M. et al. (2003). Attenuated defense response and low basal blood pressure in orexin knockout mice. American journal of physiology. Regulatory, integrative and comparative physiology, 285(3), 581-593.
  • Kondo, K., Okuno, T., Saruta, T., Kato, E. (1979). Effects of intracerebroventricular administration of prostaglandins I2, E2, F2 alpha and indomethacin on blood pressure in the rat. Prostaglandins, 17(5), 769-774.
  • Li, D.P., Pan, H.L. (2007). Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension, 49(4), 916–925.
  • Lin, Y., Matsumura, K., Tsuchihashi, T., Abe, I., Lida, M. (2002). Chronic central infusion of orexin-A increases arterial pressure in rats. Brain research bulletin, 57(5), 619-622.
  • Marcus, J.N., Aschkenasi, C.J., Lee, C.E., Chemelli, R.M., Saper, C.B. et al. (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of comparative neurology, 435(1), 6-25.
  • Murakami, Y., Okada, S., Nishihara, M., Yokotani, K. (2002). Roles of brain prostaglandin E2 and thromboxane A2 in the activation of the central sympatho-adrenomedullary outflow in rats. European journal of pharmacology, 452(3), 289-294.
  • Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M. et al. (1999). Distribution of orexin neurons in the adult rat brain. Brain Research, 827(1-2), 243-260.
  • Ono, N., Furukawa, T. (1983). Central effects of prostaglandin F2 alpha on the cardiovascular system in the rat. Pharmacology, 27(1), 23-28.
  • Osborne, P.G., Kurosawa, M. (1994). Perfusion of the preoptic area with muscimol or prostaglandin E2 stimulates cardiovascular function in anesthetized rats. Journal of the autonomic nervous system, 46(3), 199-205.
  • Peyron, C., Tighe, D.K., van den Pol, A.N., de Lecea, L., Heller, H.C. et al. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(23), 9996-10015.
  • Rao, T.S., Seth, S.D., Manchanda, S.C., Nayar, U. (1987). The involvement of the sympathetic nervous system in the centrogenic pressor and tachycardiac effects of prostaglandins E2 and F2 alpha in anaesthetised cats. Brain Research, 435(1-2), 7-14.
  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M. et al. (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573-585. Sakurai, T., Mieda, M., Tsujino, N. (2010). The orexin system: roles in sleep/wake regulation. Annals of the New York Academy of Sciences, 1200, 149-161.
  • Samson, W.K., Gosnell, B., Chang, J.K., Resch, Z.T., Murphy, T.C. (1999). Cardiovascular regulatory actions of the hypocretins in brain. Brain Research, 831(1-2), 248-253.
  • Shahid, I.Z., Rahman, A.A., Pilowsky, P.M. (2011). Intrathecal orexin A increases sympathetic outflow and respiratory drive, enhances baroreflex sensitivity and blocks the somato-sympathetic reflex. British journal of pharmacology, 162(4), 961-973.
  • Shahid, I.Z., Rahman, A.A., Pilowsky, P.M. (2012a). Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. British journal of pharmacology, 165(7), 2292-303.
  • Shahid, I.Z., Rahman, A,A,, Pilowsky, P.M. (2012b). Orexin and central regulation of cardiorespiratory system. Vitamines and Hormones, 89, 159-84.
  • Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M., Kannan, H. (1999). Sympathetic and cardiovascular actions of orexins in conscious rats. The American journal of physiology, 277(6), 1780-5.
  • Shirasaka, T., Miyahara, S., Kunitake, T., Jin, Q.H., Kato, K. et al. (2001). Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. American journal of physiology. Regulatory, integrative and comparative physiology, 281(4), 1114-1118.
  • Shirasaka, T., Takasaki, M., Kannan, H. (2003). Cardiovascular effects of leptin and orexins. American journal of physiology. Regulatory, integrative and comparative physiology, 284(3), 639-651.
  • Siren, A.L. (1982a). Central cardiovascular and thermal effects of prostaglandin E2 in rats. Acta physiologica Scandinavica, 116(3), 229-234.
  • Siren, A.L. (1982b). Central cardiovascular and thermal effects of prostaglandin D2 in rats. Prostaglandins, leukotrienes, and medicine, 8(4), 349-359.
  • Siren, A.L. (1982c). Differences in the central actions of arachidonic acid and prostaglandin F2α between spontaneously hypertensive and normotensive rats. Life Sciences, 30(6), 503-513.
  • Takahashi, H., Bunag, R.D. (1981). Pressor responses to centrally-administered prostaglandin E2 in spontaneously hypertensive rats. Hypertension, 3(4), 426-432.
  • Tassoni, D., Kaur, G., Weisinger, R.S., Sinclair, A.J. (2008). The role of eicosanoids in the brain. Asia Pacific journal of clinical nutrition, 17 (Suppl1), 220-228.
  • Van den Top, M., Nolan, M.F., Lee, K., Richardson, P.J., Buijs, R.M. et al. (2003). Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. The Journal of Physiology, 549(Pt 3), 809-821.
  • Wasserman, M.A., DuCharme, D.W., Griffin, R.L., DeGraaf, G.L., Robinson, F.G. (1977). Bronchopulmonary and cardiovascular effects of prostaglandin D2 in the dog. Prostaglandins, 13(2), 255-269.
  • Willie, J.T., Chemelli, R.M., Sinton, C.M., Yanagisawa, M. (2001). To eat orto sleep? Orexin in the regulation of feeding and wakefulness. Annual review of neuroscience, 24, 429-458.
  • Wlodawer, P., Samuelsson, B. (1973). On the organization and mechanism of prostaglandin synthetase. The Journal of biological chemistry, 248(16), 5673-5678.
  • Yalcin, M., Savci, V. (2004). Restoration of blood pressure by centrally injected U-46619, a thromboxane A2 analog, in haemorhaged hypotensive rats: investigation of different brain areas. Pharmacology, 70(4), 177-187.
  • Yalcin, M., Ak, F., Erturk, M. (2006). The role of central thromboxane A2 in cardiovascular effects of a phospholipase A2 activator melittin administrated intracerebroventricularly in normotensive conscious rats. Neuropeptides, 40 (3), 207-212.
  • Yalcin, M., Erturk, M. (2007). The involvement of the central cholinergic system in the pressor and bradycardic effects of centrally administrated melittin in normotensive conscious rats. Neuropeptides, 41(2), 103-110.
  • Yalcin, M., Aydın, C., Savci, V. (2009). Cardiovascular effect of peripheral injected melittin in normotensive conscious rats: mediation of the central cholinergic system. Prostaglandins Leukot Essent Fatty Acids, 81(5-6), 341-347.
  • Yalcin, M., Aydın, C. (2009). Cardiovascular effects of centrally administered arachidonic acid in haemorrhage-induced hypotensive rats: investigation of a peripheral mechanism. Clinical and experimental pharmacology & physiology, 36(4), 447-453.

THE INTERMEDIATION ROLE OF CENTRAL CYCLOOXYGENASE PRODUCTS TXA2, PGF2Α, PGE, AND PGD IN OREXIN-EVOKED CARDIOVASCULAR EFFECTS

Year 2021, , 251 - 266, 27.12.2021
https://doi.org/10.52538/iduhes.998711

Abstract

Centrally injected some prostaglandins (PG) and orexin (OX) produce similar cardiovascular responses. We have recently reported that both central cyclooxygenase (COX) and central lipoxygenase (LOX) enzymes mediate the cardiovascular effects of OX. In the current study, we aimed to investigate the mediating effects of thromboxane (TX) A2, PGD, PGE, and PGF2, as COX pathway subproducts known to be active in cardiovascular control, on cardiovascular responses elicited by OX. Intracerebroventricular (i.c.v.) injection of OX increased cardiovascular levels in normotensive male Sprague Dawley rats. Moreover, central pretreatment with the TXA2 synthesis inhibitor furegrelate, PGF2α receptor antagonist, PGF2α-dimethylamine, PGE, and PGD receptor antagonist AH6809 partially attenuated the centrally administered OX -induced pressor and tachycardic cardiovascular responses in rats. In conclusion, our results show that i.c.v. injection of OX increases blood pressure and heart rate. Moreover, TXA2, PGF2α, PGE, and PGD mediate, at least in part, the centrally applied OX -evoked pressor and tachycardic responses. The results suggest that centrally injected OX -evoked pressor and tachycardia responses may also be mediated by arachidonic acid metabolites other than TXA2, PGF2α, PGE, and PGD.

Project Number

214O728

References

  • Al-Barazanji, K.A., Wilson, S., Baker, J., Jessop, D.S., Harbuz, M.S. (2001). Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic releasing factor and arginine vasopressin neurones in conscious rats. Journal of Neuroendocrinology, 13(5), 421-424.
  • Altinbas, B., Guvenc-Bayram, G., Yalcin, M. (2021). The mediation of central cyclooxygenase and lipoxygenase pathways in orexin-induced cardiovascular effects. Brain Research, 1754, 147239.
  • Antunes, V.R., Brailoiu, G.C., Kwok, E.H., Scruggs, P., Dun, N.J. (2001). Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. American journal of physiology. Regulatory, integrative and comparative physiology, 281(6), 1801-1807.
  • Ariumi, H., Takano, Y., Masumi, A., Takahashi, S., Hirabara, Y. et al. (2002). Roles of the central prostaglandin EP3 receptors in cardiovascular regulation in rats. Neuroscience Letters, 324(1), 61-64.
  • Beig, M.I., Dampney, B.W., Carrive, P. (2015). Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat. Neuropharmacology, 89, 146–156.
  • Cernak, I., Savić, J., Jovanović, M., Selaković, V. (1994). Brain PGD2 and PGE2 changes during posthaemorrhagic hypovolemia in rats. Vojnosanitetski pregled, 51(5), 363-375.
  • Ciriello, J., Li, Z., de Oliveira, C.V.R. (2003a). Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Research, 991(1-2), 84-95.
  • Ciriello, J., de Oliveira, C.V.R. (2003b). Cardiac effects of hypocretin-1 in nucleus ambiguus. American journal of physiology. Regulatory, integrative and comparative physiology, 284(6), 1611-1620.
  • Dampney, R.A. (1994). Functional organization of central pathways regulating the cardiovascular system. Physiological reviews, 74(2), 323-364.
  • De Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E. et al. (1998). The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America, 95(1), 322-327.
  • Dun, N.J., Le Dun, S., Chen, C.T., Hwang, L.L., Kwok, E.H. et al. (2000). Orexins: a role in medullary sympathetic outflow. Regulatory peptides, 96 (1-2), 65-70.
  • Erkan, L.G., Altinbas, B., Guvenc, G., Aydin, B., Niaz, N. et al. (2017). The acute cardiorespiratory effects of centrally injected arachidonic acid; the mediation of prostaglandin E, D and F2α. Respiratory physiology and neurobiology, 242, 117-124.
  • Feuerstein, G., Adelberg, S.A., Kopin, I.J., Jacobowitz, D.M. (1982). Hypothalamic sites for cardiovascular and sympathetic modulation by prostaglandin E2. Brain Research, 231(2), 335-42.
  • Förstermann, U., Heldt, R., Hertting, G. (1983). Effects of intracerebroventricular administration of prostaglandin D2 on behaviour, blood pressure and body temperature as compared to prostaglandins E2 and F2 alpha. Psychopharmacology (Berl), 80(4), 365-370.
  • Förstermann, U., Heldt, R., Hertting, G. (1985). Studies on the mechanism of central cardiovascular and temperature responses to prostaglandin D2. Prostaglandins, leukotrienes, and medicine, 18(3), 301-308.
  • Girault, E.M., Yi, C.X., Fliers, E., Kalsbeek, A. (2012). Orexins, feeding, and energy balance. Progress in brain research, 198, 47–64.
  • Guvenc-Bayram, G., Altinbas, B., Iqbal, A., Cerci, E., Udum, D. et al. (2020). Intracerebroventricularly injected nesfatin-1 activates central cyclooxygenase and lipoxygenase pathways. Autonomic Neuroscience, 226, 102670.
  • Guyenet, P.G., Darnall, R.A., Riley, T.A. (1990). Rostral ventrolateral medulla and sympathorespiratory integration in rats. The American journal of physiology, 259(5 Pt 2), 1063-74.
  • Guyenet, P.G. (2006). The sympathetic control of blood pressure. Nature reviews. Neuroscience, 7(5), 335-346. Hoffman, W.E., Schmid, P.G. (1979). Cardiovascular and antidiuretic effects of central prostaglandin E2. The Journal of physiology, 288, 159–169.
  • Hoffman, W.E., Leavitt, M.L., Albrecht, R.F., Miletich, D.J. (1981). Central cardiovascular activity of prostaglandin E2, prostaglandin F2 alpha and prostacyclin. Prostaglandins, 21(6), 899-904.
  • Huang, S.C., Dai, Y.W., Lee, Y.H., Chiou, L.C., Hwang, L.L. (2010). Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. The Journal of pharmacology and experimental therapeutics, 334(2), 522-529.
  • Jochem, J. (2009). Orexin type 1 receptor antagonist SB 334867 inhibits the central histamine-induced resuscitating effect in rats subjected to haemorrhagic shock. Inflammation research : official journal of the European Histamine Research Society, 58(Suppl1), 36-7.
  • Kayaba, Y., Nakamura, A., Kasuya, Y., Ohuchi, T., Yanagisawa, M. et al. (2003). Attenuated defense response and low basal blood pressure in orexin knockout mice. American journal of physiology. Regulatory, integrative and comparative physiology, 285(3), 581-593.
  • Kondo, K., Okuno, T., Saruta, T., Kato, E. (1979). Effects of intracerebroventricular administration of prostaglandins I2, E2, F2 alpha and indomethacin on blood pressure in the rat. Prostaglandins, 17(5), 769-774.
  • Li, D.P., Pan, H.L. (2007). Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension, 49(4), 916–925.
  • Lin, Y., Matsumura, K., Tsuchihashi, T., Abe, I., Lida, M. (2002). Chronic central infusion of orexin-A increases arterial pressure in rats. Brain research bulletin, 57(5), 619-622.
  • Marcus, J.N., Aschkenasi, C.J., Lee, C.E., Chemelli, R.M., Saper, C.B. et al. (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of comparative neurology, 435(1), 6-25.
  • Murakami, Y., Okada, S., Nishihara, M., Yokotani, K. (2002). Roles of brain prostaglandin E2 and thromboxane A2 in the activation of the central sympatho-adrenomedullary outflow in rats. European journal of pharmacology, 452(3), 289-294.
  • Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M. et al. (1999). Distribution of orexin neurons in the adult rat brain. Brain Research, 827(1-2), 243-260.
  • Ono, N., Furukawa, T. (1983). Central effects of prostaglandin F2 alpha on the cardiovascular system in the rat. Pharmacology, 27(1), 23-28.
  • Osborne, P.G., Kurosawa, M. (1994). Perfusion of the preoptic area with muscimol or prostaglandin E2 stimulates cardiovascular function in anesthetized rats. Journal of the autonomic nervous system, 46(3), 199-205.
  • Peyron, C., Tighe, D.K., van den Pol, A.N., de Lecea, L., Heller, H.C. et al. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of neuroscience : the official journal of the Society for Neuroscience, 18(23), 9996-10015.
  • Rao, T.S., Seth, S.D., Manchanda, S.C., Nayar, U. (1987). The involvement of the sympathetic nervous system in the centrogenic pressor and tachycardiac effects of prostaglandins E2 and F2 alpha in anaesthetised cats. Brain Research, 435(1-2), 7-14.
  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M. et al. (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573-585. Sakurai, T., Mieda, M., Tsujino, N. (2010). The orexin system: roles in sleep/wake regulation. Annals of the New York Academy of Sciences, 1200, 149-161.
  • Samson, W.K., Gosnell, B., Chang, J.K., Resch, Z.T., Murphy, T.C. (1999). Cardiovascular regulatory actions of the hypocretins in brain. Brain Research, 831(1-2), 248-253.
  • Shahid, I.Z., Rahman, A.A., Pilowsky, P.M. (2011). Intrathecal orexin A increases sympathetic outflow and respiratory drive, enhances baroreflex sensitivity and blocks the somato-sympathetic reflex. British journal of pharmacology, 162(4), 961-973.
  • Shahid, I.Z., Rahman, A.A., Pilowsky, P.M. (2012a). Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. British journal of pharmacology, 165(7), 2292-303.
  • Shahid, I.Z., Rahman, A,A,, Pilowsky, P.M. (2012b). Orexin and central regulation of cardiorespiratory system. Vitamines and Hormones, 89, 159-84.
  • Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M., Kannan, H. (1999). Sympathetic and cardiovascular actions of orexins in conscious rats. The American journal of physiology, 277(6), 1780-5.
  • Shirasaka, T., Miyahara, S., Kunitake, T., Jin, Q.H., Kato, K. et al. (2001). Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. American journal of physiology. Regulatory, integrative and comparative physiology, 281(4), 1114-1118.
  • Shirasaka, T., Takasaki, M., Kannan, H. (2003). Cardiovascular effects of leptin and orexins. American journal of physiology. Regulatory, integrative and comparative physiology, 284(3), 639-651.
  • Siren, A.L. (1982a). Central cardiovascular and thermal effects of prostaglandin E2 in rats. Acta physiologica Scandinavica, 116(3), 229-234.
  • Siren, A.L. (1982b). Central cardiovascular and thermal effects of prostaglandin D2 in rats. Prostaglandins, leukotrienes, and medicine, 8(4), 349-359.
  • Siren, A.L. (1982c). Differences in the central actions of arachidonic acid and prostaglandin F2α between spontaneously hypertensive and normotensive rats. Life Sciences, 30(6), 503-513.
  • Takahashi, H., Bunag, R.D. (1981). Pressor responses to centrally-administered prostaglandin E2 in spontaneously hypertensive rats. Hypertension, 3(4), 426-432.
  • Tassoni, D., Kaur, G., Weisinger, R.S., Sinclair, A.J. (2008). The role of eicosanoids in the brain. Asia Pacific journal of clinical nutrition, 17 (Suppl1), 220-228.
  • Van den Top, M., Nolan, M.F., Lee, K., Richardson, P.J., Buijs, R.M. et al. (2003). Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. The Journal of Physiology, 549(Pt 3), 809-821.
  • Wasserman, M.A., DuCharme, D.W., Griffin, R.L., DeGraaf, G.L., Robinson, F.G. (1977). Bronchopulmonary and cardiovascular effects of prostaglandin D2 in the dog. Prostaglandins, 13(2), 255-269.
  • Willie, J.T., Chemelli, R.M., Sinton, C.M., Yanagisawa, M. (2001). To eat orto sleep? Orexin in the regulation of feeding and wakefulness. Annual review of neuroscience, 24, 429-458.
  • Wlodawer, P., Samuelsson, B. (1973). On the organization and mechanism of prostaglandin synthetase. The Journal of biological chemistry, 248(16), 5673-5678.
  • Yalcin, M., Savci, V. (2004). Restoration of blood pressure by centrally injected U-46619, a thromboxane A2 analog, in haemorhaged hypotensive rats: investigation of different brain areas. Pharmacology, 70(4), 177-187.
  • Yalcin, M., Ak, F., Erturk, M. (2006). The role of central thromboxane A2 in cardiovascular effects of a phospholipase A2 activator melittin administrated intracerebroventricularly in normotensive conscious rats. Neuropeptides, 40 (3), 207-212.
  • Yalcin, M., Erturk, M. (2007). The involvement of the central cholinergic system in the pressor and bradycardic effects of centrally administrated melittin in normotensive conscious rats. Neuropeptides, 41(2), 103-110.
  • Yalcin, M., Aydın, C., Savci, V. (2009). Cardiovascular effect of peripheral injected melittin in normotensive conscious rats: mediation of the central cholinergic system. Prostaglandins Leukot Essent Fatty Acids, 81(5-6), 341-347.
  • Yalcin, M., Aydın, C. (2009). Cardiovascular effects of centrally administered arachidonic acid in haemorrhage-induced hypotensive rats: investigation of a peripheral mechanism. Clinical and experimental pharmacology & physiology, 36(4), 447-453.
There are 55 citations in total.

Details

Primary Language English
Subjects Clinical Sciences, Health Care Administration
Journal Section Articles
Authors

Burçin Altınbaş 0000-0002-9534-736X

Project Number 214O728
Publication Date December 27, 2021
Submission Date September 21, 2021
Published in Issue Year 2021

Cite

APA Altınbaş, B. (2021). THE INTERMEDIATION ROLE OF CENTRAL CYCLOOXYGENASE PRODUCTS TXA2, PGF2Α, PGE, AND PGD IN OREXIN-EVOKED CARDIOVASCULAR EFFECTS. Izmir Democracy University Health Sciences Journal, 4(3), 251-266. https://doi.org/10.52538/iduhes.998711

227151960619606                 19629                   19630 1995319957 

19952  19958  20682 

20686


23848