Review
BibTex RIS Cite

ANJİYOJENİK VE ANTİANJİYOJENİK ÖZELLİĞİ BELİRLEMEDE KULLANILAN in vitro ve in vivo YÖNTEMLER

Year 2019, Volume: 2 Issue: 3, 141 - 159, 29.12.2019

Abstract

Anjiyogenez damar ağlarından yeni kan damarlarının gelişimidir ve yara iyileşmesi, dişi üreme sistemi, fetal gelişim gibi fizyolojik durumlar; sedef hastalığı, diabetik retinopati, tümör gelişimi ve metestaz gibi patolojik durumlar için gerekli bir süreçtir. Anjiyojenez analizleri ajanların anjiyojenik veya anti-anjiyojenik özellikleri belirlemek için kullanılmaktadır. Anjiyogenik aktivite in vitro ve in vivo yöntemler kullanılarak değerlendirilir. Bu yöntemlerin herbirinin avantaj ve dezavantajları bulunmaktadır. İdeal bir metot kolayca ölçülebilir, hassas ve güvenilir olmalıdır. Bu çalışmanın temel amacı, bu alanda çalışan araştırmacılara anjiyojenik karakteri belirlemek için mevcut olan yöntemleri tanıtmaktır.

References

  • Akhtar N, Dickerson EB., Auerbach R. (2002). The sponge/Matrigel angiogenesis assay. Angiogenesis, 5(1-2): 75-80.
  • AlMalki WH., Shahid I., Mehdi AY., Hafeez MH. (2014). Assessment methods for angiogenesis and current approaches for its quantification. Indian J Pharmacol, 46(3), 251–256.
  • Altman FP. (1976). Tetrazolium salts and formazans. Prog. Histochem. Cytochem, 9,:1–56.
  • Andrade SP., Ferreira MA. (2016). The Sponge Implant Model of Angiogenesis. Methods Mol Biol, 1430: 333-343.
  • Auerbach R., Lewis R., Shinners B., Kubai L., Akhtar N. (2003). Angiogenesis Assays: A Critical Overview. Clinical Chemistry, 49(1), 32–40.
  • Auerbach R., Auerbach W., Polakowski I. (1991). Assays for angiogenesis: A review. Pharmacol. Ther, 51:1–11.
  • Bellacen K., Lewis EC. (2009). Aortic Ring Assay. J Vis Exp, (33)1564: 1-2.
  • Berridge MV., Herst PM., Tan AS. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev, 11: 127 -152.
  • Blacher S , Devy L , Hlushchuk R , Larger E , Lamande N , Burri P, Corvol P, Djonov V , Foidart JM, & Noàl A. (2005). Quantifıcation of angiogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol, 24: 169-180.
  • Blacher S., Devy L., Hlushchuk R., Larger E., Lamandé N., Burri P., Corvol P., Djonov V., Foidart JM., Noël A. (2005). Quantification of angıogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol, 24: 169-180.
  • Burns TC., Ortiz-Gonzalez XR., Gutierrez-Perez M., Keene CD., Sharda R, Demorest ZL., Jiang Y., Nelson-Holte M., Soriano M., Nakagawa Y., Luquin MR., Garcia-Verdugo JM., Prosper F., Low WC., Verfaillie CM. (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24:1121-1127.
  • Chávez MN., Aedo G., Fierro FA. , Miguel L.. Allende ML., Egaña JT. (2016). Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol, 7 (56): 1-15.
  • Couffinha IT., Kearney M., Witzenbichler B. (1997). Vascular endothelial growth factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol, 150:1673–685.
  • Dellian M., Witwer BP., Salehi HA., Yuan F., Jain RK. (1996). Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol, 149: 59–72.
  • Fajardo LF., Kwan HH., Kowalski J., Prionas SD., Allison AC. (1992). Dual role of tumour necrosis factor-alpha in angiogenesis. Am. J. Pathol, 140: 539–544.
  • Gimbrone MAJ, Cotran RS, Leapman SB, & Folkman J. (1974). Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst, 52: 413–427.
  • Gimbrone, MA., Cotran RS., Folkman, J. (1974). Human vascular endothelial cells in culture growth and DNA synthesis. J Cell Biol, 60(3): 673-684.
  • Ginouves M., Carme B., Couppie P., Prevot G. (2014). Comparison of Tetrazolium Salt Assays for Evaluation of Drug Activity against Leishmania spp. J Clin Microbiol, 52(6): 2131–2138.
  • Grattner HG. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218(47):474-475.
  • Hartwell DW., Butterfield CE., Frenette PS., Kenyon BM., Hynes RO., Folkman J., Wagner DD. (1998). Angiogenesis in P- and E-selectin-deficient mice. Microcirculation, 5: 173–178.
  • Hu DE., Hiley CR., Smither RL., Gresham GA., Fan TP. (1995). Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab. Invest, 72: 601–610.
  • Huang T., Chen YH., Walker AM. (2004). Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques, 37(3): 406-412.
  • Huyck L., Ampe C., Troys MV. (2012). The XTT Cell Proliferation Assay Applied to Cell Layers Embedded in Three-Dimensional Matrix, Assay. Drug Dev Technol, 10(4): 382-392.
  • Ishiyama M., Shiga M., Sakamoto K., Mizoguchi M., He PG. (1993). A New Sulfonated Tetrazolium Salt That produces a Highly Water -soluble Formazan Dye. Chem Pharm Bull, 41: 1118 -1122
  • Khan GJ., Shakir L., Khan S., Naeem HS., Omer MO. (2014). Assessment methods of angiogenesis and present approaches for its quantification. Cancer Research Journal, 2(3): 47-62.
  • Koparal AT., Ulus G., Zeytinoğlu M., Tay T., Özdemir Türk A. (2010). Angiogenesis Inhibition by A Lichen Compound Olivetoric Acid. Phytother Res, 4: 754–758.
  • Kuhn DM., Balkis M., Chandra J., Mukherjee PK., Ghannoum MA. (2003). Uses and Limitations of the XTT Assay in Studies of Candida Growth and Metabolism. J Clin Microbiol, 41(1): 506–508.
  • Kumaravel RS., Begum SFM. (2015). Evaluation of cytotoxıcity effect in drug coated intravascular catheter. World j Pharm Pharm Sci, 4(11): 2023-2030.
  • Madhavan HN. (2007). Simple Laboratory methods to measure cell proliferation using DNA synthesis property. J Stem Cells Regen Med, 3(1):12-14.
  • Mahadevan V., Hart IR, Lewis GP. (1989). Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique. Cancer Res, 49: 415–419.
  • Malich G, Markovic B, Winder C. (1997). The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology, 124(3): 179-192.
  • McCluskey C., Quinn JP., McGrath JW. (2005). An evaluation of three new generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. Microb Ecol, 49: 379-387.
  • Menyhárt O., Harami-Papp H., Sukumar S., Schäfer R., Magnani L., de Barrios O., Győrffy B. (2016). Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta,1866:300-319.
  • Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth, 65: 55–63.
  • Muthukkaruppan VR., Auerbach R. (1979). Angiogenesis in the mouse cornea. Science, 205: 1416–1418.
  • Muthukkaruppan VR., Shinners BL., Lewis R., Park SJ., Baechler BJ., Auerbach R. (2000). The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free organ culture system. Proc Am Assoc Cancer Res, 41: 65.
  • O'Toole SA., Sheppard BL., McGuinness EP., Gleeson NC., Yoneda M., Bonnar J. (2003) The MTS assay as an indicator of chemosensitivity/resistance in malignant gynaecological tumours, 27(1): 47-54.
  • Özgürtaş T. (2009). Anjiyogenezde bir in-vivo model: Civciv Koriyoallantoik Membran. Gülhane Tıp Dergisi, 51: 67-69.
  • Padhani AR, Newman M. (2001). Challenges for imaging angiogenesis. Br J Radiol, 74:886–890.
  • Paull KD., Shoemaker RH., Boyd MR., Parsons JL., Risbood PA., Barbera WA., Sharma MN., Baker DC., Hand E., Scudiero DA., Monks A., Alley MC., Grote M. (1988). The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J. Heterocyclic Chem; 25: 911.
  • Plunkett ML., Hailey JA. (1990). An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab. Invest, 62: 510–517.
  • Presta M., Rusnati M., Belleri M., Morbidelli L., Ziche M., Ribatti D. (1999). Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenic process. Cancer Res, 59: 2417–2424.
  • Rajabi M., Mousa S.A. (2017). The Role of Angiogenesis in Cancer Treatment. Biomedicines, 5(2): 34.
  • Riss T., O’Brien M., Moravec R. (2003) Choosing the right cell-based assay for your research. Cell Notes, 6: 6-12.
  • Riss TL., Moravec RA., Niles AL., Duellman S., Benink HA., Worzella TJ., Minor L. (2013). Assay Guidance Manual. Cell Viability Assays. Eli-Lilly & Company, 305-335.
  • Roehm NW., Rodgers GH., Hatfield SM., Glasebrook AL. (1991). An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. Journal of lmmunological Methods, 142: 257-265.
  • Rubinstein AL. (2003). Zebrafish: from disease modelling to drug discovery. Curr. Opin. Drug Discov. Devel, 6: 218–223.
  • Sánchez NS., Königsberg M. (2006). Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ, 34(3): 209-212.
  • Schlfiter C., Duchrow M., Wohlenberg C., Becker MHG., Key G., Flad HD., Gerdes J. (1993). The Cell Proliferation-associated Antigen of Antibody Ki-67: A Very Large,
  • Ubiquitous Nuclear Protein with Numerous Repeated Elements, Representing a New Kind of Cell Cycle-maintaining Proteins. J Cell Biol, 123(3): 513-522.
  • Scudiero D., Shoemaker RH., Paull KD., Monks A., Tierney S., Nofziger TH., Currens MJ., Seniff D., Boyd MR. (1988). Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res, 48: 4827-4833.
  • Semba T., Funahashi Y., Ono N., Yamamoto Y., Sugi NH., Asada M., Yoshimatsu K., Wakabayashi T. (2004). An Angiogenesis Inhibitor E7820 Shows Broad-Spectrum Tumor Growth Inhibition in a Xenograft Model Possible Value of Integrin α2 on Platelets as a Biological Marker. Clinical cancer research, 10(4): 1430-1438.
  • Seminario-Vidal L., Lazarowski ER., Okada SF. (2009). Assessment of extracellular ATP concentrations. Methods. Mol Bio, 574: 25-36.
  • Seunghyun O., Jongwoo,K., Quanri J., Hyejin K., Joo WJ., Kyu WK., Waun KH., Hoyoung L. (2008). Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxiainducible factor-1 alpha. Int J Cancer, 122: 5-14.
  • Shimamura T., Ukeda H. (2012). Maillard Reaction in Milk – Effect of Heat Treatment. Biochemistry, Genetics and Molecular Biology, 5:148-158.
  • Silva WS., Jayampath Seneviratne J., Parahitiyawa N., Rosa EAR., Lakshman Perera Samaranayake LP., Del Bel Cury AA. (2008). Improvement of XTT Assay Performance for Studies Involving Candida albicans Biofilms. Braz Dent J, 19(4): 364-369.
  • Silveira Filho Lda M., Petrucci O Jr., Carmo MR., Oliveira PP., Vilarinho KA., Vieira RW., Braile DM. (2008). Development of isolated swine “working heart model” with parabiotic circulation. Rev Bras Cir Cardiovasc, 23(1): 14-22.
  • Staton CA., Stribbling SM., Tazzyman S., Hughes R., Brown NJ., Lewis CE. (2004). Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Path; 85: 233–248.
  • Staton (2) CA., Brown NJ., Rodgers GR., Corke KP., Tazzyman S., Underwood JC., Lewis CE. (2004). Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood, 103(2): 601-606.
  • Szumilak M., Galdyszynska M., Dominska K., Stanczak A., Piastowska-Ciesielska A. (2017). Anticancer activity of some polyamine derivatives on human prostate and breast cancer cell lines. , 64(2): 307-313. Tahergorabi Z., Khazaei M. (2012). A Review on Angiogenesis and Its Assays. Iran J Basic Med Sci, 15(6): 1110-1126.
  • Terzioğlu G., Keskin AU., Yanıkkaya Demirel G. (2013). Measurement Methods of Cell Proliferation and a Comparison of Various Commercial Proliferation Kits. Turk J Immunol, 1(3):74-89.
  • Tong Y., Zhang X., Zhao W., Zhang Y., Jingyu L., Shi,Y., Tan W., Li M., Zhang Y., Tong L. (2004). Anti-angiogenic effects of Shiraiachrome A, a compound isolated from a Chinese folk medicine used to treat rheumatoid arthritis. Europan Journal of Pharmacology, 494: 101-109.
  • Toth M., Fridman R. (2001). Assessment of Gelatinases (MMP-2 and MMP-9 by Gelatin Zymography. Methods Mol Med, 57: 163-174.
  • Ulus G, Koparal AT, Baysal K, Yetik Anacak G, Karabay Yavaşoğlu NU. (2018). The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology. 70(6):1537-1550.
  • van Meerloo J., Kaspers GJ., Cloos J. (2011). Cell sensitivity assays: the MTT assay. Methods Mol Biol, 731: 237-245.
  • Veeramani VP., Veni G. (2010). An Essential Review on Current Techniques Used in Angiogenesis Assays. International Journal of PharmTech Research, 2(4): 2379-2387. Waldman FM., Chew K., Ljung BM., Goodson W., Hom J., Duarte LA., Smith HS., Mayall B. (1991). A comparison between bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Mod Pathol, 4:718-722.
  • Wang P., Henning SM., Heber D. (2010). Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS one, 5(4): 1-10.
  • Xie Z., Thompson A., Kashleva H., Dongari-Bagtzoglou A. (2011). A quantitative real-time RT-PCR assay for mature C. albicans biofilms. BMC Microbiology, 11: 93.
  • Yin LM., Wei Y., Wang Y., Xu YD., Yang YQ. (2013). Long Term and Standard Incubations of WST-1 Reagent Reflect the Same Inhibitory Trend of Cell Viability in Rat Airway Smooth Muscle Cells. Int J Med Sci, 10(1): 68-72.
  • Zetter BR. (1987). Assay of capillary endothelial cell migration. Methods Enzymol, 147:135-144.

METHODS FOR ASSAYING ANGIOGENIC-ANTIANGIOGENIC FEATURE in vitro and in vivo

Year 2019, Volume: 2 Issue: 3, 141 - 159, 29.12.2019

Abstract

Angiogenesis is the growing of new blood vessels from vasculature network and essential in many conditions like wound healing, female reproductive system, fetal development as well as psoriasis, diabetic retinopathy, tumour growth and metastasis. Angiogenesis assays are maintained to determine the angiogenic or anti-angiogenic properties of the agents. Angiogenic activity can be determined by using in vitro and in vivo systems. These methods have advantages and disadvantages yet. Nevertheless an ideal method should be easily measurable, precise and reliable. The main objective of the review is introduce the methods available to determine the angiogenic character to the researchers working in this field.

References

  • Akhtar N, Dickerson EB., Auerbach R. (2002). The sponge/Matrigel angiogenesis assay. Angiogenesis, 5(1-2): 75-80.
  • AlMalki WH., Shahid I., Mehdi AY., Hafeez MH. (2014). Assessment methods for angiogenesis and current approaches for its quantification. Indian J Pharmacol, 46(3), 251–256.
  • Altman FP. (1976). Tetrazolium salts and formazans. Prog. Histochem. Cytochem, 9,:1–56.
  • Andrade SP., Ferreira MA. (2016). The Sponge Implant Model of Angiogenesis. Methods Mol Biol, 1430: 333-343.
  • Auerbach R., Lewis R., Shinners B., Kubai L., Akhtar N. (2003). Angiogenesis Assays: A Critical Overview. Clinical Chemistry, 49(1), 32–40.
  • Auerbach R., Auerbach W., Polakowski I. (1991). Assays for angiogenesis: A review. Pharmacol. Ther, 51:1–11.
  • Bellacen K., Lewis EC. (2009). Aortic Ring Assay. J Vis Exp, (33)1564: 1-2.
  • Berridge MV., Herst PM., Tan AS. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev, 11: 127 -152.
  • Blacher S , Devy L , Hlushchuk R , Larger E , Lamande N , Burri P, Corvol P, Djonov V , Foidart JM, & Noàl A. (2005). Quantifıcation of angiogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol, 24: 169-180.
  • Blacher S., Devy L., Hlushchuk R., Larger E., Lamandé N., Burri P., Corvol P., Djonov V., Foidart JM., Noël A. (2005). Quantification of angıogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol, 24: 169-180.
  • Burns TC., Ortiz-Gonzalez XR., Gutierrez-Perez M., Keene CD., Sharda R, Demorest ZL., Jiang Y., Nelson-Holte M., Soriano M., Nakagawa Y., Luquin MR., Garcia-Verdugo JM., Prosper F., Low WC., Verfaillie CM. (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24:1121-1127.
  • Chávez MN., Aedo G., Fierro FA. , Miguel L.. Allende ML., Egaña JT. (2016). Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol, 7 (56): 1-15.
  • Couffinha IT., Kearney M., Witzenbichler B. (1997). Vascular endothelial growth factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol, 150:1673–685.
  • Dellian M., Witwer BP., Salehi HA., Yuan F., Jain RK. (1996). Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol, 149: 59–72.
  • Fajardo LF., Kwan HH., Kowalski J., Prionas SD., Allison AC. (1992). Dual role of tumour necrosis factor-alpha in angiogenesis. Am. J. Pathol, 140: 539–544.
  • Gimbrone MAJ, Cotran RS, Leapman SB, & Folkman J. (1974). Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst, 52: 413–427.
  • Gimbrone, MA., Cotran RS., Folkman, J. (1974). Human vascular endothelial cells in culture growth and DNA synthesis. J Cell Biol, 60(3): 673-684.
  • Ginouves M., Carme B., Couppie P., Prevot G. (2014). Comparison of Tetrazolium Salt Assays for Evaluation of Drug Activity against Leishmania spp. J Clin Microbiol, 52(6): 2131–2138.
  • Grattner HG. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218(47):474-475.
  • Hartwell DW., Butterfield CE., Frenette PS., Kenyon BM., Hynes RO., Folkman J., Wagner DD. (1998). Angiogenesis in P- and E-selectin-deficient mice. Microcirculation, 5: 173–178.
  • Hu DE., Hiley CR., Smither RL., Gresham GA., Fan TP. (1995). Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab. Invest, 72: 601–610.
  • Huang T., Chen YH., Walker AM. (2004). Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques, 37(3): 406-412.
  • Huyck L., Ampe C., Troys MV. (2012). The XTT Cell Proliferation Assay Applied to Cell Layers Embedded in Three-Dimensional Matrix, Assay. Drug Dev Technol, 10(4): 382-392.
  • Ishiyama M., Shiga M., Sakamoto K., Mizoguchi M., He PG. (1993). A New Sulfonated Tetrazolium Salt That produces a Highly Water -soluble Formazan Dye. Chem Pharm Bull, 41: 1118 -1122
  • Khan GJ., Shakir L., Khan S., Naeem HS., Omer MO. (2014). Assessment methods of angiogenesis and present approaches for its quantification. Cancer Research Journal, 2(3): 47-62.
  • Koparal AT., Ulus G., Zeytinoğlu M., Tay T., Özdemir Türk A. (2010). Angiogenesis Inhibition by A Lichen Compound Olivetoric Acid. Phytother Res, 4: 754–758.
  • Kuhn DM., Balkis M., Chandra J., Mukherjee PK., Ghannoum MA. (2003). Uses and Limitations of the XTT Assay in Studies of Candida Growth and Metabolism. J Clin Microbiol, 41(1): 506–508.
  • Kumaravel RS., Begum SFM. (2015). Evaluation of cytotoxıcity effect in drug coated intravascular catheter. World j Pharm Pharm Sci, 4(11): 2023-2030.
  • Madhavan HN. (2007). Simple Laboratory methods to measure cell proliferation using DNA synthesis property. J Stem Cells Regen Med, 3(1):12-14.
  • Mahadevan V., Hart IR, Lewis GP. (1989). Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique. Cancer Res, 49: 415–419.
  • Malich G, Markovic B, Winder C. (1997). The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology, 124(3): 179-192.
  • McCluskey C., Quinn JP., McGrath JW. (2005). An evaluation of three new generation tetrazolium salts for the measurement of respiratory activity in activated sludge microorganisms. Microb Ecol, 49: 379-387.
  • Menyhárt O., Harami-Papp H., Sukumar S., Schäfer R., Magnani L., de Barrios O., Győrffy B. (2016). Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta,1866:300-319.
  • Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth, 65: 55–63.
  • Muthukkaruppan VR., Auerbach R. (1979). Angiogenesis in the mouse cornea. Science, 205: 1416–1418.
  • Muthukkaruppan VR., Shinners BL., Lewis R., Park SJ., Baechler BJ., Auerbach R. (2000). The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free organ culture system. Proc Am Assoc Cancer Res, 41: 65.
  • O'Toole SA., Sheppard BL., McGuinness EP., Gleeson NC., Yoneda M., Bonnar J. (2003) The MTS assay as an indicator of chemosensitivity/resistance in malignant gynaecological tumours, 27(1): 47-54.
  • Özgürtaş T. (2009). Anjiyogenezde bir in-vivo model: Civciv Koriyoallantoik Membran. Gülhane Tıp Dergisi, 51: 67-69.
  • Padhani AR, Newman M. (2001). Challenges for imaging angiogenesis. Br J Radiol, 74:886–890.
  • Paull KD., Shoemaker RH., Boyd MR., Parsons JL., Risbood PA., Barbera WA., Sharma MN., Baker DC., Hand E., Scudiero DA., Monks A., Alley MC., Grote M. (1988). The synthesis of XTT: a new tetrazolium reagent that is bioreducible to a water-soluble formazan. J. Heterocyclic Chem; 25: 911.
  • Plunkett ML., Hailey JA. (1990). An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab. Invest, 62: 510–517.
  • Presta M., Rusnati M., Belleri M., Morbidelli L., Ziche M., Ribatti D. (1999). Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenic process. Cancer Res, 59: 2417–2424.
  • Rajabi M., Mousa S.A. (2017). The Role of Angiogenesis in Cancer Treatment. Biomedicines, 5(2): 34.
  • Riss T., O’Brien M., Moravec R. (2003) Choosing the right cell-based assay for your research. Cell Notes, 6: 6-12.
  • Riss TL., Moravec RA., Niles AL., Duellman S., Benink HA., Worzella TJ., Minor L. (2013). Assay Guidance Manual. Cell Viability Assays. Eli-Lilly & Company, 305-335.
  • Roehm NW., Rodgers GH., Hatfield SM., Glasebrook AL. (1991). An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. Journal of lmmunological Methods, 142: 257-265.
  • Rubinstein AL. (2003). Zebrafish: from disease modelling to drug discovery. Curr. Opin. Drug Discov. Devel, 6: 218–223.
  • Sánchez NS., Königsberg M. (2006). Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ, 34(3): 209-212.
  • Schlfiter C., Duchrow M., Wohlenberg C., Becker MHG., Key G., Flad HD., Gerdes J. (1993). The Cell Proliferation-associated Antigen of Antibody Ki-67: A Very Large,
  • Ubiquitous Nuclear Protein with Numerous Repeated Elements, Representing a New Kind of Cell Cycle-maintaining Proteins. J Cell Biol, 123(3): 513-522.
  • Scudiero D., Shoemaker RH., Paull KD., Monks A., Tierney S., Nofziger TH., Currens MJ., Seniff D., Boyd MR. (1988). Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res, 48: 4827-4833.
  • Semba T., Funahashi Y., Ono N., Yamamoto Y., Sugi NH., Asada M., Yoshimatsu K., Wakabayashi T. (2004). An Angiogenesis Inhibitor E7820 Shows Broad-Spectrum Tumor Growth Inhibition in a Xenograft Model Possible Value of Integrin α2 on Platelets as a Biological Marker. Clinical cancer research, 10(4): 1430-1438.
  • Seminario-Vidal L., Lazarowski ER., Okada SF. (2009). Assessment of extracellular ATP concentrations. Methods. Mol Bio, 574: 25-36.
  • Seunghyun O., Jongwoo,K., Quanri J., Hyejin K., Joo WJ., Kyu WK., Waun KH., Hoyoung L. (2008). Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxiainducible factor-1 alpha. Int J Cancer, 122: 5-14.
  • Shimamura T., Ukeda H. (2012). Maillard Reaction in Milk – Effect of Heat Treatment. Biochemistry, Genetics and Molecular Biology, 5:148-158.
  • Silva WS., Jayampath Seneviratne J., Parahitiyawa N., Rosa EAR., Lakshman Perera Samaranayake LP., Del Bel Cury AA. (2008). Improvement of XTT Assay Performance for Studies Involving Candida albicans Biofilms. Braz Dent J, 19(4): 364-369.
  • Silveira Filho Lda M., Petrucci O Jr., Carmo MR., Oliveira PP., Vilarinho KA., Vieira RW., Braile DM. (2008). Development of isolated swine “working heart model” with parabiotic circulation. Rev Bras Cir Cardiovasc, 23(1): 14-22.
  • Staton CA., Stribbling SM., Tazzyman S., Hughes R., Brown NJ., Lewis CE. (2004). Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Path; 85: 233–248.
  • Staton (2) CA., Brown NJ., Rodgers GR., Corke KP., Tazzyman S., Underwood JC., Lewis CE. (2004). Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood, 103(2): 601-606.
  • Szumilak M., Galdyszynska M., Dominska K., Stanczak A., Piastowska-Ciesielska A. (2017). Anticancer activity of some polyamine derivatives on human prostate and breast cancer cell lines. , 64(2): 307-313. Tahergorabi Z., Khazaei M. (2012). A Review on Angiogenesis and Its Assays. Iran J Basic Med Sci, 15(6): 1110-1126.
  • Terzioğlu G., Keskin AU., Yanıkkaya Demirel G. (2013). Measurement Methods of Cell Proliferation and a Comparison of Various Commercial Proliferation Kits. Turk J Immunol, 1(3):74-89.
  • Tong Y., Zhang X., Zhao W., Zhang Y., Jingyu L., Shi,Y., Tan W., Li M., Zhang Y., Tong L. (2004). Anti-angiogenic effects of Shiraiachrome A, a compound isolated from a Chinese folk medicine used to treat rheumatoid arthritis. Europan Journal of Pharmacology, 494: 101-109.
  • Toth M., Fridman R. (2001). Assessment of Gelatinases (MMP-2 and MMP-9 by Gelatin Zymography. Methods Mol Med, 57: 163-174.
  • Ulus G, Koparal AT, Baysal K, Yetik Anacak G, Karabay Yavaşoğlu NU. (2018). The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology. 70(6):1537-1550.
  • van Meerloo J., Kaspers GJ., Cloos J. (2011). Cell sensitivity assays: the MTT assay. Methods Mol Biol, 731: 237-245.
  • Veeramani VP., Veni G. (2010). An Essential Review on Current Techniques Used in Angiogenesis Assays. International Journal of PharmTech Research, 2(4): 2379-2387. Waldman FM., Chew K., Ljung BM., Goodson W., Hom J., Duarte LA., Smith HS., Mayall B. (1991). A comparison between bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Mod Pathol, 4:718-722.
  • Wang P., Henning SM., Heber D. (2010). Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS one, 5(4): 1-10.
  • Xie Z., Thompson A., Kashleva H., Dongari-Bagtzoglou A. (2011). A quantitative real-time RT-PCR assay for mature C. albicans biofilms. BMC Microbiology, 11: 93.
  • Yin LM., Wei Y., Wang Y., Xu YD., Yang YQ. (2013). Long Term and Standard Incubations of WST-1 Reagent Reflect the Same Inhibitory Trend of Cell Viability in Rat Airway Smooth Muscle Cells. Int J Med Sci, 10(1): 68-72.
  • Zetter BR. (1987). Assay of capillary endothelial cell migration. Methods Enzymol, 147:135-144.
There are 70 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Gönül Ulus 0000-0002-7146-7172

Publication Date December 29, 2019
Submission Date August 8, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Ulus, G. (2019). METHODS FOR ASSAYING ANGIOGENIC-ANTIANGIOGENIC FEATURE in vitro and in vivo. Izmir Democracy University Health Sciences Journal, 2(3), 141-159.

227151960619606                 19629                   19630 1995319957 

19952  19958  20682 

20686


23848