Research Article
BibTex RIS Cite

Synthesis and Characterization of Oleic Acid Coated Magnetic Nanoparticles for Hyperthermia Applications

Year 2019, , 16 - 29, 31.12.2019
https://doi.org/10.38061/idunas.657975

Abstract

In this study, we aimed to synthesize stable dispersions of iron oxide nanoparticles (IONs) coated with different amounts of oleic acid (OA) suitable for magnetic nano hyperthermia applications. For this purpose, bare and different amounts of oleic acid (0.2%, 0.5% and 1.0%, v/v) coated IONs were prepared by co-precipitation method. Then, their structures, morphologies, magnetic properties and heating abilities were characterized by using suitable techniques. IONs+1.0%OA nanoparticles showed low agglomeration with high dispersion capacity. Moreover, 1.0% OA coating showed the highest heating ability with a temperature increase of (25.2 °C) compared to IONs+OA (0.2%, 16.4 °C; 0.5%, 19 °C), but similar with bare IONs (26.7 °C). The specific absorption rate (SAR) values of bare IONs and IONs+OA (0.2%, 0.5%, 1.0% v/v) were found as 39.50, 34.81, 23.36 and 45.98 W/g, respectively. Our results showed that the comparable hyperthermia effect of IONs+1.0%OA with bare IONs was attributable to their uniform dispersion performance along with higher SAR values. We concluded that the dispersion of hydrophobic IONs+OA in an aqueous medium is one of the critical requirements for increasing temperature in magnetic nano hyperthermia applications.

Supporting Institution

TUBITAK

Project Number

SBAG-118S027

Thanks

We are grateful to Dr. Mehmet Burak Kaynar for help with the XRD, VSM and hyperthermia measurements.

References

  • Albarqi, H. A., Wong, L. H., Schumann, C., Sabei, F. Y., Korzun, T., Li, X., . . . Taratula, O. (2019). Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano, 13(6), 6383-6395. doi:10.1021/acsnano.8b06542.
  • Araújo-Neto, R., Silva-Freitas, E., Carvalho, J., Pontes, T., Silva, K., Damasceno, I., . . . Carrico, A. S. (2014). Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 364, 72-79.
  • Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062.
  • Cai, J., Miao, Y. Q., Yu, B. Z., Ma, P., Li, L., & Fan, H. M. (2017). Large-Scale, Facile Transfer of Oleic Acid-Stabilized Iron Oxide Nanoparticles to the Aqueous Phase for Biological Applications. Langmuir, 33(7), 1662-1669. doi:10.1021/acs.langmuir.6b03360.
  • Cano, M., Nunez-Lozano, R., Lumbreras, R., Gonzalez-Rodriguez, V., Delgado-Garcia, A., Jimenez-Hoyuela, J. M., & de la Cueva-Mendez, G. (2017). Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale, 9(2), 812-822. doi:10.1039/c6nr07462f.
  • Deatsch, A. E., & Evans, B. A. (2014). Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 354, 163-172. doi:10.1016/j.jmmm.2013.11.006.
  • El-Boubbou, K. (2018). Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 13(8), 929-952.
  • Ghosh, R., Pradhan, L., Devi, Y. P., Meena, S. S., Tewari, R., Kumar, A., . . . Ningthoujam, R. S. (2011). Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. Journal of Materials Chemistry, 21(35). doi:10.1039/c1jm10092k.
  • Gupta, R., Pancholi, K., De Sa, R., Murray, D., Huo, D., Droubi, G., . . . Njuguna, J. (2019). Effect of Oleic Acid Coating of Iron Oxide Nanoparticles on Properties of Magnetic Polyamide-6 Nanocomposite. JOM, 71(9), 3119-3128.
  • Hilger, I., Frühauf, K., Andrä, W., Hiergeist, R., Hergt, R., & Kaiser, W. A. (2002). Heating potential of iron oxides for therapeutic purposes in interventional radiology. Academic radiology, 9(2), 198-202.
  • Iacovita, C., Florea, A., Dudric, R., Pall, E., Moldovan, A., Tetean, R., . . . Lucaciu, C. (2016). Small versus large iron oxide magnetic nanoparticles: hyperthermia and cell uptake properties. Molecules, 21(10), 1357.
  • Ibarra, J., Melendres, J., Almada, M., Burboa, M. G., Taboada, P., Juárez, J., & Valdez, M. A. (2015). Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Materials Research Express, 2(9). doi:10.1088/2053-1591/2/9/095010.
  • Jadhav, N. V., Prasad, A. I., Kumar, A., Mishra, R., Dhara, S., Babu, K. R., . . . Vatsa, R. K. (2013). Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf B Biointerfaces, 108, 158-168. doi:10.1016/j.colsurfb.2013.02.035.
  • Jovanović, S., Spreitzer, M., Tramšek, M., Trontelj, Z., & Suvorov, D. (2014). Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. The Journal of Physical Chemistry C, 118(25), 13844-13856.
  • Lai, C. W., Low, F. W., Tai, M. F., & Abdul Hamid, S. B. (2018). Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Advances in Polymer Technology, 37(6), 1712-1721.
  • Lin, T.-C., Lin, F.-H., & Lin, J.-C. (2012). In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater, 8(7), 2704-2711.
  • Liu, H., Zhang, J., Chen, X., Du, X.-S., Zhang, J.-L., Liu, G., & Zhang, W.-G. (2016). Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale, 8(15), 7808-7826.
  • Liu, M., Li, X. Y., Li, J. J., Su, X. M., Wu, Z. Y., Li, P. F., . . . Shi, Z. W. (2015). Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples. Anal Bioanal Chem, 407(13), 3875-3880. doi:10.1007/s00216-015-8592-7.
  • Liu, X., Kaminski, M. D., Guan, Y., Chen, H., Liu, H., & Rosengart, A. J. (2006). Preparation and characterization of hydrophobic superparamagnetic magnetite gel. Journal of Magnetism and Magnetic Materials, 306(2), 248-253.
  • Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z., & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533-7548. doi:10.3390/molecules18077533.
  • Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics, 17(2), 1247-1248.
  • Okassa, L. N., Marchais, H., Douziech-Eyrolles, L., Herve, K., Cohen-Jonathan, S., Munnier, E., . . . Chourpa, I. (2007). Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm, 67(1), 31-38. doi:10.1016/j.ejpb.2006.12.020.
  • Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B, 177(5), 421-427. doi:10.1016/j.mseb.2012.01.003.
  • Prabha, S., Zhou, W.-Z., Panyam, J., & Labhasetwar, V. (2002). Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. International Journal of Pharmaceutics, 244(1-2), 105-115.
  • Reddy, L. H., Arias, J. L., Nicolas, J., & Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews, 112(11), 5818-5878.
  • Sánchez-Cabezas, S., Montes-Robles, R., Gallo, J., Sancenón, F., & Martínez-Máñez, R. (2019). Combining magnetic hyperthermia and dual T 1/T 2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Transactions, 48(12), 3883-3892.
  • Shan, Z., Yang, W.-S., Zhang, X., Huang, Q.-M., & Ye, H. (2007). Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and t he potential for bio-applications. Journal of the Brazilian Chemical Society, 18(7), 1329-1335.
  • Sharma, G., & Jeevanandam, P. (2013). Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route. RSC Adv., 3(1), 189-200. doi:10.1039/c2ra22004k.
  • Sharma, K. S., Ningthoujam, R. S., Dubey, A. K., Chattopadhyay, A., Phapale, S., Juluri, R. R., . . . Vatsa, R. K. (2018). Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci Rep, 8(1), 14766. doi:10.1038/s41598-018-32934-w.
  • Shubitidze, F., Kekalo, K., Stigliano, R., & Baker, I. (2015). Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. Journal of Applied Physics, 117(9), 094302. doi:10.1063/1.4907915.
  • Soares, P. I., Alves, A. M., Pereira, L. C., Coutinho, J. T., Ferreira, I. M., Novo, C. M., & Borges, J. P. (2014). Effects of surfactants on the magnetic properties of iron oxide colloids. J Colloid Interface Sci, 419, 46-51. doi:10.1016/j.jcis.2013.12.045.
  • Soares, P. I. P., Laia, C. A. T., Carvalho, A., Pereira, L. C. J., Coutinho, J. T., Ferreira, I. M. M., . . . Borges, J. P. (2016). Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 383, 240-247. doi:10.1016/j.apsusc.2016.04.181.
  • Tansık, G., Yakar, A., & Gündüz, U. (2014). Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. Journal of Nanoparticle Research, 16(1), 2171.
  • Wang, F., Yin, C., Wei, X., Wang, Q., Cui, L., Wang, Y., . . . Li, J. (2014). Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles modified with oleic acid. Integrated Ferroelectrics, 153(1), 92-101.
  • Wildeboer, R., Southern, P., & Pankhurst, Q. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics, 47(49), 495003.
  • Wu, N., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano letters, 4(2), 383-386.
  • Xie, L., Jin, W., Chen, H., & Zhang, Q. (2019). Superparamagnetic Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy. Journal of Biomedical Nanotechnology, 15(2), 215-416. doi:10.1166/jbn.2019.2678.
  • Xie, W., Guo, Z., Gao, F., Gao, Q., Wang, D., Liaw, B.-s., . . . Zhao, L. (2018). Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 8(12), 3284.
  • Yang, K., Peng, H., Wen, Y., & Li, N. (2010). Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Applied Surface Science, 256(10), 3093-3097. doi:10.1016/j.apsusc.2009.11.079.
  • Zhang, L., He, R., & Gu, H.-C. (2006). Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 253(5), 2611-2617. doi:10.1016/j.apsusc.2006.05.023.
  • Zhang, Q., Wang, C., Qiao, L., Yan, H., & Liu, K. (2009). Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer. Journal of Materials Chemistry, 19(44), 8393-8402.
Year 2019, , 16 - 29, 31.12.2019
https://doi.org/10.38061/idunas.657975

Abstract

Project Number

SBAG-118S027

References

  • Albarqi, H. A., Wong, L. H., Schumann, C., Sabei, F. Y., Korzun, T., Li, X., . . . Taratula, O. (2019). Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano, 13(6), 6383-6395. doi:10.1021/acsnano.8b06542.
  • Araújo-Neto, R., Silva-Freitas, E., Carvalho, J., Pontes, T., Silva, K., Damasceno, I., . . . Carrico, A. S. (2014). Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials, 364, 72-79.
  • Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., & Kamrava, S. K. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release, 235, 205-221. doi:10.1016/j.jconrel.2016.05.062.
  • Cai, J., Miao, Y. Q., Yu, B. Z., Ma, P., Li, L., & Fan, H. M. (2017). Large-Scale, Facile Transfer of Oleic Acid-Stabilized Iron Oxide Nanoparticles to the Aqueous Phase for Biological Applications. Langmuir, 33(7), 1662-1669. doi:10.1021/acs.langmuir.6b03360.
  • Cano, M., Nunez-Lozano, R., Lumbreras, R., Gonzalez-Rodriguez, V., Delgado-Garcia, A., Jimenez-Hoyuela, J. M., & de la Cueva-Mendez, G. (2017). Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale, 9(2), 812-822. doi:10.1039/c6nr07462f.
  • Deatsch, A. E., & Evans, B. A. (2014). Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 354, 163-172. doi:10.1016/j.jmmm.2013.11.006.
  • El-Boubbou, K. (2018). Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine, 13(8), 929-952.
  • Ghosh, R., Pradhan, L., Devi, Y. P., Meena, S. S., Tewari, R., Kumar, A., . . . Ningthoujam, R. S. (2011). Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. Journal of Materials Chemistry, 21(35). doi:10.1039/c1jm10092k.
  • Gupta, R., Pancholi, K., De Sa, R., Murray, D., Huo, D., Droubi, G., . . . Njuguna, J. (2019). Effect of Oleic Acid Coating of Iron Oxide Nanoparticles on Properties of Magnetic Polyamide-6 Nanocomposite. JOM, 71(9), 3119-3128.
  • Hilger, I., Frühauf, K., Andrä, W., Hiergeist, R., Hergt, R., & Kaiser, W. A. (2002). Heating potential of iron oxides for therapeutic purposes in interventional radiology. Academic radiology, 9(2), 198-202.
  • Iacovita, C., Florea, A., Dudric, R., Pall, E., Moldovan, A., Tetean, R., . . . Lucaciu, C. (2016). Small versus large iron oxide magnetic nanoparticles: hyperthermia and cell uptake properties. Molecules, 21(10), 1357.
  • Ibarra, J., Melendres, J., Almada, M., Burboa, M. G., Taboada, P., Juárez, J., & Valdez, M. A. (2015). Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Materials Research Express, 2(9). doi:10.1088/2053-1591/2/9/095010.
  • Jadhav, N. V., Prasad, A. I., Kumar, A., Mishra, R., Dhara, S., Babu, K. R., . . . Vatsa, R. K. (2013). Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf B Biointerfaces, 108, 158-168. doi:10.1016/j.colsurfb.2013.02.035.
  • Jovanović, S., Spreitzer, M., Tramšek, M., Trontelj, Z., & Suvorov, D. (2014). Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. The Journal of Physical Chemistry C, 118(25), 13844-13856.
  • Lai, C. W., Low, F. W., Tai, M. F., & Abdul Hamid, S. B. (2018). Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Advances in Polymer Technology, 37(6), 1712-1721.
  • Lin, T.-C., Lin, F.-H., & Lin, J.-C. (2012). In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater, 8(7), 2704-2711.
  • Liu, H., Zhang, J., Chen, X., Du, X.-S., Zhang, J.-L., Liu, G., & Zhang, W.-G. (2016). Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale, 8(15), 7808-7826.
  • Liu, M., Li, X. Y., Li, J. J., Su, X. M., Wu, Z. Y., Li, P. F., . . . Shi, Z. W. (2015). Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples. Anal Bioanal Chem, 407(13), 3875-3880. doi:10.1007/s00216-015-8592-7.
  • Liu, X., Kaminski, M. D., Guan, Y., Chen, H., Liu, H., & Rosengart, A. J. (2006). Preparation and characterization of hydrophobic superparamagnetic magnetite gel. Journal of Magnetism and Magnetic Materials, 306(2), 248-253.
  • Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z., & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533-7548. doi:10.3390/molecules18077533.
  • Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics, 17(2), 1247-1248.
  • Okassa, L. N., Marchais, H., Douziech-Eyrolles, L., Herve, K., Cohen-Jonathan, S., Munnier, E., . . . Chourpa, I. (2007). Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm, 67(1), 31-38. doi:10.1016/j.ejpb.2006.12.020.
  • Petcharoen, K., & Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B, 177(5), 421-427. doi:10.1016/j.mseb.2012.01.003.
  • Prabha, S., Zhou, W.-Z., Panyam, J., & Labhasetwar, V. (2002). Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. International Journal of Pharmaceutics, 244(1-2), 105-115.
  • Reddy, L. H., Arias, J. L., Nicolas, J., & Couvreur, P. (2012). Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews, 112(11), 5818-5878.
  • Sánchez-Cabezas, S., Montes-Robles, R., Gallo, J., Sancenón, F., & Martínez-Máñez, R. (2019). Combining magnetic hyperthermia and dual T 1/T 2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Transactions, 48(12), 3883-3892.
  • Shan, Z., Yang, W.-S., Zhang, X., Huang, Q.-M., & Ye, H. (2007). Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and t he potential for bio-applications. Journal of the Brazilian Chemical Society, 18(7), 1329-1335.
  • Sharma, G., & Jeevanandam, P. (2013). Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route. RSC Adv., 3(1), 189-200. doi:10.1039/c2ra22004k.
  • Sharma, K. S., Ningthoujam, R. S., Dubey, A. K., Chattopadhyay, A., Phapale, S., Juluri, R. R., . . . Vatsa, R. K. (2018). Synthesis and characterization of monodispersed water dispersible Fe3O4 nanoparticles and in vitro studies on human breast carcinoma cell line under hyperthermia condition. Sci Rep, 8(1), 14766. doi:10.1038/s41598-018-32934-w.
  • Shubitidze, F., Kekalo, K., Stigliano, R., & Baker, I. (2015). Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. Journal of Applied Physics, 117(9), 094302. doi:10.1063/1.4907915.
  • Soares, P. I., Alves, A. M., Pereira, L. C., Coutinho, J. T., Ferreira, I. M., Novo, C. M., & Borges, J. P. (2014). Effects of surfactants on the magnetic properties of iron oxide colloids. J Colloid Interface Sci, 419, 46-51. doi:10.1016/j.jcis.2013.12.045.
  • Soares, P. I. P., Laia, C. A. T., Carvalho, A., Pereira, L. C. J., Coutinho, J. T., Ferreira, I. M. M., . . . Borges, J. P. (2016). Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 383, 240-247. doi:10.1016/j.apsusc.2016.04.181.
  • Tansık, G., Yakar, A., & Gündüz, U. (2014). Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. Journal of Nanoparticle Research, 16(1), 2171.
  • Wang, F., Yin, C., Wei, X., Wang, Q., Cui, L., Wang, Y., . . . Li, J. (2014). Synthesis and characterization of superparamagnetic Fe3O4 nanoparticles modified with oleic acid. Integrated Ferroelectrics, 153(1), 92-101.
  • Wildeboer, R., Southern, P., & Pankhurst, Q. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics, 47(49), 495003.
  • Wu, N., Fu, L., Su, M., Aslam, M., Wong, K. C., & Dravid, V. P. (2004). Interaction of fatty acid monolayers with cobalt nanoparticles. Nano letters, 4(2), 383-386.
  • Xie, L., Jin, W., Chen, H., & Zhang, Q. (2019). Superparamagnetic Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy. Journal of Biomedical Nanotechnology, 15(2), 215-416. doi:10.1166/jbn.2019.2678.
  • Xie, W., Guo, Z., Gao, F., Gao, Q., Wang, D., Liaw, B.-s., . . . Zhao, L. (2018). Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 8(12), 3284.
  • Yang, K., Peng, H., Wen, Y., & Li, N. (2010). Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Applied Surface Science, 256(10), 3093-3097. doi:10.1016/j.apsusc.2009.11.079.
  • Zhang, L., He, R., & Gu, H.-C. (2006). Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 253(5), 2611-2617. doi:10.1016/j.apsusc.2006.05.023.
  • Zhang, Q., Wang, C., Qiao, L., Yan, H., & Liu, K. (2009). Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer. Journal of Materials Chemistry, 19(44), 8393-8402.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fatih Senturk 0000-0002-2436-3362

Soner Cakmak 0000-0003-2245-8322

Goknur Guler Ozturk This is me 0000-0003-4081-1775

Project Number SBAG-118S027
Publication Date December 31, 2019
Acceptance Date December 30, 2019
Published in Issue Year 2019

Cite

APA Senturk, F., Cakmak, S., & Guler Ozturk, G. (2019). Synthesis and Characterization of Oleic Acid Coated Magnetic Nanoparticles for Hyperthermia Applications. Natural and Applied Sciences Journal, 2(2), 16-29. https://doi.org/10.38061/idunas.657975