Year 2024,
Volume: 7 Issue: 2, 69 - 85, 27.12.2024
Satılmış Ürgün
,
Mustafa Özgür Bora
,
Sinan Fidan
,
Şeref Tosunoğlu
,
Timur Canel
References
- 1. Raj, R. J., Selvam, P., & Pughalendi, M. (2021). A review of aluminum alloys in aircraft and aerospace industry. J. Huazhong Univ. Sci. Technol, 1671, 4512.
- 2. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 3. Khalid, M. Y., Umer, R., & Khan, K. A. (2023). Review of recent trends and developments in aluminum 7075 alloys and metal matrix composites (MMCs) for aircraft applications. Results in Engineering, 101372.
- 4. Masters, I. G., Williams, D. K., & Roy, R. (2013). Friction behaviour in strip draw test of pre-stretched high strength automotive aluminum alloys. International Journal of Machine Tools and Manufacture, 73, 17-24.
- 5. Zaraska, L., Sulka, G. D., Szeremeta, J., & Jaskuła, M. (2010). Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochimica Acta, 55(14), 4377-4386.
- 6. Garcia-Garcia, F. J. (2009). Effect of Magnesium, Nickel and Titanium on the Electrochemical Behaviour of AA1050 Aluminum Alloys in Nitric Acid. The University of Manchester (United Kingdom).
- 7. Witkowska, M. (2013). Interogation of the Manufacturing Route of Aluminium Aa 1050 Used in Lithographic Application. The University of Manchester (United Kingdom).
- 8. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 9. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 10. Eslami, M. (2019). Surface Treatments to Protect Conventional and Rheo-High Pressure Die Cast Al-Si Alloys from Corrosion (Doctoral dissertation, University of Trento).
- 11. Ononiwu, N. H. (2021). Machinability studies and characterization of aluminium matrix reinforced with fly-ash and carbonized eggshells (Doctoral dissertation, University of Johannesburg).
- 12. Ebnesajjad, S., & Ebnesajjad, C. (2013). Surface treatment of materials for adhesive bonding. William Andrew.
- 13. Surface treatment is economically necessary to prevent degradation, as industry data estimates that corrosion costs alone account for 3-4% of GDP in many industrialized nations.
- 14. Wood, R. J., & Lu, P. (2024). Coatings and surface modification of alloys for tribo-corrosion applications. Coatings, 14(1), 99.
- 15. Kuang, W., Miao, Q., Ding, W., & Li, H. (2022). A short review on the influence of mechanical machining on tribological and wear behavior of components. The International Journal of Advanced Manufacturing Technology, 120(3), 1401-1413.
- 16. Khanna, V. K. (2010). Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. Journal of Physics D: Applied Physics, 44(3), 034004.
- 17. Steen, W. M., & Watkins, K. G. (1993). Coating by laser surface treatment. Le Journal de Physique IV, 3(C9), C9-581.
- 18. Jeyaprakash, N., Yang, C. H., & Kumar, D. R. (2020). Laser surface modification of materials. Practical Applications of Laser Ablation, 61-81.
- 19. Montealegre, M. A., Castro, G., Rey, P., Arias, J. L., Vázquez, P., & González, M. (2010). Surface treatments by laser technology. Contemporary Materials, 1(1), 19-30.
- 20. Holmberg, K., & Matthews, A. (2009). Coatings tribology: properties, mechanisms, techniques and applications in surface engineering. Elsevier.
- 21. Selvan, J. S., Subramanian, K., & Nath, A. K. (1999). Effect of laser surface hardening on En18 (AISI 5135) steel. Journal of Materials Processing Technology, 91(1-3), 29-36.
- 22. Asnafi, N. (2021). Tool and die making, surface treatment, and repair by laser-based additive processes. BHM Berg-und Hüttenmännische Monatshefte, 166(5), 225-236.
- 23. Masato, D., Piccolo, L., Lucchetta, G., & Sorgato, M. (2022). Texturing Technologies for Plastics Injection Molding: A Review. Micromachines, 13(8), 1211.
- 24. Bose, S., Robertson, S. F., & Bandyopadhyay, A. (2018). Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta biomaterialia, 66, 6-22.
- 25. Wang, Q., Zhou, P., Liu, S., Attarilar, S., Ma, R. L. W., Zhong, Y., & Wang, L. (2020). Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials, 10(6), 1244.
- 26. Arulvel, S., Jain, A., Kandasamy, J., & Singhal, M. (2023). Laser processing techniques for surface property enhancement: Focus on material advancement. Surfaces and Interfaces, 42, 103293.
- 27. Liu, Y., Chen, X., & Xin, J. H. (2009). Can superhydrophobic surfaces repel hot water?. Journal of Materials Chemistry, 19(31), 5602-5611
- 28. Roach, P., Shirtcliffe, N. J., & Newton, M. I. (2008). Progess in superhydrophobic surface development. Soft matter, 4(2), 224-240.
- 29. Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R. B., & Mageshwaran, G. J. J. O. C. T. (2018). Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15, 231-250.
- 30. Bai, Y., Zhang, H., Shao, Y., Zhang, H., & Zhu, J. (2021). Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings, 11(2), 116.
- 31. Pavithra, D., & Doble, M. (2008). Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials, 3(3), 034003.
- 32. Keley, M. M. (2017). Super–Hydrophobic Surfaces Based On Fluorinated Carbon And Its Application On Avoiding Ice–Accretion (Doctoral dissertation, Universidade Federal do Rio de Janeiro).
- 33. Buczkowska, K. (2023). Hydrophobic Protection for Building Materials.
- 34. Yu, Q., Xiong, R., Li, C., & Pecht, M. G. (2019). Water-resistant smartphone technologies. IEEE Access, 7, 42757-42773.
- 35. Ferrari, M., & Benedetti, A. (2015). Superhydrophobic surfaces for applications in seawater. Advances in colloid and interface science, 222, 291-304.
- 36. Aisswarya, K. (2016). Rough surface preparation through chemical etching for super-hydrophobicity/Aisswarya Kumaran (Doctoral dissertation, University of Malaya).
- 37. Kozhukharov, S., Girginov, C., Tsanev, A., & Petrova, M. (2019). Elucidation of the anodization and silver incorporation impact on the surface properties of AA1050 aluminum alloy. Journal of The Electrochemical Society, 166(10), C231.
Determination of the Optimum Laser Processing Parameters Required to Obtain a Stable Hydrophobic Surface on the Surface of AA1050 Aluminum Alloy
Year 2024,
Volume: 7 Issue: 2, 69 - 85, 27.12.2024
Satılmış Ürgün
,
Mustafa Özgür Bora
,
Sinan Fidan
,
Şeref Tosunoğlu
,
Timur Canel
Abstract
In this study, the surfaces of sheets made of AA1050 aluminum alloy, which has high aluminum purity and also high strength, were roughened with a fiber laser. The aim of the study is to obtain a surface with a highly stable contact angle. For this purpose, it was aimed to minimize the change in the contact angle with time. Three different laser processing parameters were used. The effects of the laser parameters on the stability of the contact angle were investigated. According to the data obtained as a result of the study, the texture type created on the surface was calculated as the most effective parameter to obtain a stable surface. The rate of influence of the texture type parameter on the result is 61.61 %. The parameter with the least effect on the result was calculated as laser scanned factor with 15.31%. The parameter that moderately affected the result was calculated as laser power with 23.08%. In addition, according to the ANOVA calculations, it was suggested that a more stable surface pattern could be obtained in the experiment with different parameters.
References
- 1. Raj, R. J., Selvam, P., & Pughalendi, M. (2021). A review of aluminum alloys in aircraft and aerospace industry. J. Huazhong Univ. Sci. Technol, 1671, 4512.
- 2. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 3. Khalid, M. Y., Umer, R., & Khan, K. A. (2023). Review of recent trends and developments in aluminum 7075 alloys and metal matrix composites (MMCs) for aircraft applications. Results in Engineering, 101372.
- 4. Masters, I. G., Williams, D. K., & Roy, R. (2013). Friction behaviour in strip draw test of pre-stretched high strength automotive aluminum alloys. International Journal of Machine Tools and Manufacture, 73, 17-24.
- 5. Zaraska, L., Sulka, G. D., Szeremeta, J., & Jaskuła, M. (2010). Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum. Electrochimica Acta, 55(14), 4377-4386.
- 6. Garcia-Garcia, F. J. (2009). Effect of Magnesium, Nickel and Titanium on the Electrochemical Behaviour of AA1050 Aluminum Alloys in Nitric Acid. The University of Manchester (United Kingdom).
- 7. Witkowska, M. (2013). Interogation of the Manufacturing Route of Aluminium Aa 1050 Used in Lithographic Application. The University of Manchester (United Kingdom).
- 8. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 9. Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 1-46.
- 10. Eslami, M. (2019). Surface Treatments to Protect Conventional and Rheo-High Pressure Die Cast Al-Si Alloys from Corrosion (Doctoral dissertation, University of Trento).
- 11. Ononiwu, N. H. (2021). Machinability studies and characterization of aluminium matrix reinforced with fly-ash and carbonized eggshells (Doctoral dissertation, University of Johannesburg).
- 12. Ebnesajjad, S., & Ebnesajjad, C. (2013). Surface treatment of materials for adhesive bonding. William Andrew.
- 13. Surface treatment is economically necessary to prevent degradation, as industry data estimates that corrosion costs alone account for 3-4% of GDP in many industrialized nations.
- 14. Wood, R. J., & Lu, P. (2024). Coatings and surface modification of alloys for tribo-corrosion applications. Coatings, 14(1), 99.
- 15. Kuang, W., Miao, Q., Ding, W., & Li, H. (2022). A short review on the influence of mechanical machining on tribological and wear behavior of components. The International Journal of Advanced Manufacturing Technology, 120(3), 1401-1413.
- 16. Khanna, V. K. (2010). Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices. Journal of Physics D: Applied Physics, 44(3), 034004.
- 17. Steen, W. M., & Watkins, K. G. (1993). Coating by laser surface treatment. Le Journal de Physique IV, 3(C9), C9-581.
- 18. Jeyaprakash, N., Yang, C. H., & Kumar, D. R. (2020). Laser surface modification of materials. Practical Applications of Laser Ablation, 61-81.
- 19. Montealegre, M. A., Castro, G., Rey, P., Arias, J. L., Vázquez, P., & González, M. (2010). Surface treatments by laser technology. Contemporary Materials, 1(1), 19-30.
- 20. Holmberg, K., & Matthews, A. (2009). Coatings tribology: properties, mechanisms, techniques and applications in surface engineering. Elsevier.
- 21. Selvan, J. S., Subramanian, K., & Nath, A. K. (1999). Effect of laser surface hardening on En18 (AISI 5135) steel. Journal of Materials Processing Technology, 91(1-3), 29-36.
- 22. Asnafi, N. (2021). Tool and die making, surface treatment, and repair by laser-based additive processes. BHM Berg-und Hüttenmännische Monatshefte, 166(5), 225-236.
- 23. Masato, D., Piccolo, L., Lucchetta, G., & Sorgato, M. (2022). Texturing Technologies for Plastics Injection Molding: A Review. Micromachines, 13(8), 1211.
- 24. Bose, S., Robertson, S. F., & Bandyopadhyay, A. (2018). Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta biomaterialia, 66, 6-22.
- 25. Wang, Q., Zhou, P., Liu, S., Attarilar, S., Ma, R. L. W., Zhong, Y., & Wang, L. (2020). Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials, 10(6), 1244.
- 26. Arulvel, S., Jain, A., Kandasamy, J., & Singhal, M. (2023). Laser processing techniques for surface property enhancement: Focus on material advancement. Surfaces and Interfaces, 42, 103293.
- 27. Liu, Y., Chen, X., & Xin, J. H. (2009). Can superhydrophobic surfaces repel hot water?. Journal of Materials Chemistry, 19(31), 5602-5611
- 28. Roach, P., Shirtcliffe, N. J., & Newton, M. I. (2008). Progess in superhydrophobic surface development. Soft matter, 4(2), 224-240.
- 29. Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R. B., & Mageshwaran, G. J. J. O. C. T. (2018). Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15, 231-250.
- 30. Bai, Y., Zhang, H., Shao, Y., Zhang, H., & Zhu, J. (2021). Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings, 11(2), 116.
- 31. Pavithra, D., & Doble, M. (2008). Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials, 3(3), 034003.
- 32. Keley, M. M. (2017). Super–Hydrophobic Surfaces Based On Fluorinated Carbon And Its Application On Avoiding Ice–Accretion (Doctoral dissertation, Universidade Federal do Rio de Janeiro).
- 33. Buczkowska, K. (2023). Hydrophobic Protection for Building Materials.
- 34. Yu, Q., Xiong, R., Li, C., & Pecht, M. G. (2019). Water-resistant smartphone technologies. IEEE Access, 7, 42757-42773.
- 35. Ferrari, M., & Benedetti, A. (2015). Superhydrophobic surfaces for applications in seawater. Advances in colloid and interface science, 222, 291-304.
- 36. Aisswarya, K. (2016). Rough surface preparation through chemical etching for super-hydrophobicity/Aisswarya Kumaran (Doctoral dissertation, University of Malaya).
- 37. Kozhukharov, S., Girginov, C., Tsanev, A., & Petrova, M. (2019). Elucidation of the anodization and silver incorporation impact on the surface properties of AA1050 aluminum alloy. Journal of The Electrochemical Society, 166(10), C231.