Literature considers under the name "unimaginable numbers" any
positive integer going beyond any physical application. One of the most known
methodologies to conceive such numbers is using hyper-operations, that is a
sequence of binary functions dened recursively starting from the usual chain:
addition - multiplication - exponentiation. The most important notations to
represent such hyper-operations have been considered by Knuth, Goodstein,
Ackermann and Conway as described in this work's introduction. Within this
work we will give an axiomatic setup for this topic, and then try to nd on one
hand other ways to represent unimaginable numbers, as well as on the other
hand applications to computer science, where the algorithmic nature of representations and the increased computation capabilities of computers give the
perfect eld to develop further the topic, exploring some possibilities to effectively operate with such big numbers. In particular, we will give some axioms
and generalizations for the up-arrow notation and, considering a representation via rooted trees of the hereditary base-n notation, we will determine in
some cases an effective bound related to "Goodstein sequences" using Knuths
notation. Finally, we will also analyze some methods to compare big numbers,
proving specically a theorem about approximation using scientic notation
and a theorem on hyperoperation bounds for Steinhaus-Moser notation.
W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann.,
99(1) (1928), 118-133.
L. Antoniotti, F. Caldarola, G. d’Atri and M. Pellegrini, New approaches
to basic calculus: an experimentation via numerical computation, In: Y.D.
Sergeyev and D. Kvasov (eds.) Numerical Computations: Theory and Algorithms
NUMTA 2019, Lecture Notes in Computer Science, vol. 11973 (2020),
Springer, Cham, 329-342.
L. Antoniotti, F. Caldarola and M. Maiolo, Infinite numerical computing applied
to Hilbert’s, Peano’s, and Moore’s curves, Mediterr. J. Math., 17(3)
(2020), 99 (19 pp).
G. d’Atri, Logic-based consistency checking of XBRL instances, IJACT 3
(2014), 126-131.
A. A. Bennett, Note on an Operation of the Third Grade, Ann. of Math, Second
Series, 17(2) (1915), 74-75.
J. Bowers, Exploding Array Function, Retrieved on 21-11-2018,
http://www.polytope.net/hedrondude/array.htm.
F. Caldarola, The exact measures of the Sierpi´nski d-dimensional tetrahedron
in connection with a Diophantine nonlinear system, Commun. Nonlinear Sci.
and Numer. Simul., 63 (2018), 228-238.
F. Caldarola, The Sierpinski curve viewed by numerical computations with
infinities and infinitesimals, Appl. Math. Comput., 318 (2018), 321-328.
F. Caldarola, D. Cortese, G. d’Atri and M. Maiolo, Paradoxes of the infinite
and ontological dilemmas between ancient philosophy and modern mathematical
solutions, In: Y.D. Sergeyev and D. Kvasov (eds.) Numerical Computations:
Theory and Algorithms NUMTA 2019, Lecture Notes in Computer Science,
vol. 11973 (2020), Springer, Cham, 358-372.
F. Caldarola, G. d’Atri, M. Maiolo and G. Pirillo, New algebraic and geometric
constructs arising from Fibonacci numbers. In honor of Masami Ito, Soft
Computing, 24(23) (2020), 17497-17508.
F. Caldarola, G. d’Atri, M. Maiolo and G. Pirillo, The sequence of Carboncettus
octagons, In: Y.D. Sergeyev and D. Kvasov (eds.) Numerical Computations:
Theory and Algorithms NUMTA 2019, Lecture Notes in Computer Science,
vol. 11973 (2020), Springer, Cham, 373-380.
F. Caldarola, G. d’Atri, P. Mercuri and V. Talamanca, On the arithmetic of
Knuth’s powers and some computational results about their density, In: Y.D.
Sergeyev and D. Kvasov (eds.) Numerical Computations: Theory and Algorithms
NUMTA 2019, Lecture Notes in Computer Science, vol. 11973 (2020),
Springer, Cham, 381-388.
F. Caldarola and M. Maiolo, On the topological convergence of multi-rule sequences
of sets and fractal patterns, Soft Computing, 24(23) (2020), 17737-
17749.
F. Caldarola, M. Maiolo and V. Solferino, A new approach to the Z-transform
through infinite computation, Commun. Nonlinear Sci. Numer. Simul., 82
(2020), 105019.
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge
University Press, New York, 1957.
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York,
1996.
R. L. Goodstein, Transfinite ordinals in recursive number theory, J. Symbolic
Logic, 12 (1947), 123-129.
R. L. Goodstein, On the restricted ordinal theorem, J. Symbolic Logic, 9 (1944),
33-41.
D. E. Knuth, Mathematics and computer Science: coping with finiteness, Science,
194(4271) (1976), 1235-1242.
A. Leonardis, Continued fractions in local fields and nested automorphisms,
Ph.D. thesis, 2014.
R. Munafo, Inventing New Operators and Functions, Large Numbers at
MROB, Retrieved on 19-11-2019.
R. Munafo, Versions of Ackermann’s Function, Large Numbers at MROB,
Retrieved on 19-11-2019.
K. K. Nambiar, Ackermann Functions and Transfinite Ordinals, Appl. Math.
Lett., 8(6) (1995), 51-53.
R. Rucker, Infinity and the Mind: The Science and Philosophy of the Infinite,
Princeton University Press, Princeton, NJ, 2019.
Y. D. Sergeyev, Numerical point of view on Calculus for functions assuming
finite, infinite and infinitesimal values over finite, infinite and infinitesimal
domains, Nonlinear Anal., 71(12) (2009), 1688-1707.
H. Steinhaus, Mathematical Snapshots, 3rd Edition, Oxford University Press,
New York, 1969.
W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann.,
99(1) (1928), 118-133.
L. Antoniotti, F. Caldarola, G. d’Atri and M. Pellegrini, New approaches
to basic calculus: an experimentation via numerical computation, In: Y.D.
Sergeyev and D. Kvasov (eds.) Numerical Computations: Theory and Algorithms
NUMTA 2019, Lecture Notes in Computer Science, vol. 11973 (2020),
Springer, Cham, 329-342.
L. Antoniotti, F. Caldarola and M. Maiolo, Infinite numerical computing applied
to Hilbert’s, Peano’s, and Moore’s curves, Mediterr. J. Math., 17(3)
(2020), 99 (19 pp).
G. d’Atri, Logic-based consistency checking of XBRL instances, IJACT 3
(2014), 126-131.
A. A. Bennett, Note on an Operation of the Third Grade, Ann. of Math, Second
Series, 17(2) (1915), 74-75.
J. Bowers, Exploding Array Function, Retrieved on 21-11-2018,
http://www.polytope.net/hedrondude/array.htm.
F. Caldarola, The exact measures of the Sierpi´nski d-dimensional tetrahedron
in connection with a Diophantine nonlinear system, Commun. Nonlinear Sci.
and Numer. Simul., 63 (2018), 228-238.
F. Caldarola, The Sierpinski curve viewed by numerical computations with
infinities and infinitesimals, Appl. Math. Comput., 318 (2018), 321-328.
F. Caldarola, D. Cortese, G. d’Atri and M. Maiolo, Paradoxes of the infinite
and ontological dilemmas between ancient philosophy and modern mathematical
solutions, In: Y.D. Sergeyev and D. Kvasov (eds.) Numerical Computations:
Theory and Algorithms NUMTA 2019, Lecture Notes in Computer Science,
vol. 11973 (2020), Springer, Cham, 358-372.
F. Caldarola, G. d’Atri, M. Maiolo and G. Pirillo, New algebraic and geometric
constructs arising from Fibonacci numbers. In honor of Masami Ito, Soft
Computing, 24(23) (2020), 17497-17508.
F. Caldarola, G. d’Atri, M. Maiolo and G. Pirillo, The sequence of Carboncettus
octagons, In: Y.D. Sergeyev and D. Kvasov (eds.) Numerical Computations:
Theory and Algorithms NUMTA 2019, Lecture Notes in Computer Science,
vol. 11973 (2020), Springer, Cham, 373-380.
F. Caldarola, G. d’Atri, P. Mercuri and V. Talamanca, On the arithmetic of
Knuth’s powers and some computational results about their density, In: Y.D.
Sergeyev and D. Kvasov (eds.) Numerical Computations: Theory and Algorithms
NUMTA 2019, Lecture Notes in Computer Science, vol. 11973 (2020),
Springer, Cham, 381-388.
F. Caldarola and M. Maiolo, On the topological convergence of multi-rule sequences
of sets and fractal patterns, Soft Computing, 24(23) (2020), 17737-
17749.
F. Caldarola, M. Maiolo and V. Solferino, A new approach to the Z-transform
through infinite computation, Commun. Nonlinear Sci. Numer. Simul., 82
(2020), 105019.
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge
University Press, New York, 1957.
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York,
1996.
R. L. Goodstein, Transfinite ordinals in recursive number theory, J. Symbolic
Logic, 12 (1947), 123-129.
R. L. Goodstein, On the restricted ordinal theorem, J. Symbolic Logic, 9 (1944),
33-41.
D. E. Knuth, Mathematics and computer Science: coping with finiteness, Science,
194(4271) (1976), 1235-1242.
A. Leonardis, Continued fractions in local fields and nested automorphisms,
Ph.D. thesis, 2014.
R. Munafo, Inventing New Operators and Functions, Large Numbers at
MROB, Retrieved on 19-11-2019.
R. Munafo, Versions of Ackermann’s Function, Large Numbers at MROB,
Retrieved on 19-11-2019.
K. K. Nambiar, Ackermann Functions and Transfinite Ordinals, Appl. Math.
Lett., 8(6) (1995), 51-53.
R. Rucker, Infinity and the Mind: The Science and Philosophy of the Infinite,
Princeton University Press, Princeton, NJ, 2019.
Y. D. Sergeyev, Numerical point of view on Calculus for functions assuming
finite, infinite and infinitesimal values over finite, infinite and infinitesimal
domains, Nonlinear Anal., 71(12) (2009), 1688-1707.
H. Steinhaus, Mathematical Snapshots, 3rd Edition, Oxford University Press,
New York, 1969.
Leonardıs, A., D’atrı, G., & Caldarola, F. (2022). Beyond Knuth’s notation for unimaginable numbers within computational number theory. International Electronic Journal of Algebra, 31(31), 55-73. https://doi.org/10.24330/ieja.1058413
AMA
Leonardıs A, D’atrı G, Caldarola F. Beyond Knuth’s notation for unimaginable numbers within computational number theory. IEJA. January 2022;31(31):55-73. doi:10.24330/ieja.1058413
Chicago
Leonardıs, Antonino, Gianfranco D’atrı, and Fabio Caldarola. “Beyond Knuth’s Notation for Unimaginable Numbers Within Computational Number Theory”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 55-73. https://doi.org/10.24330/ieja.1058413.
EndNote
Leonardıs A, D’atrı G, Caldarola F (January 1, 2022) Beyond Knuth’s notation for unimaginable numbers within computational number theory. International Electronic Journal of Algebra 31 31 55–73.
IEEE
A. Leonardıs, G. D’atrı, and F. Caldarola, “Beyond Knuth’s notation for unimaginable numbers within computational number theory”, IEJA, vol. 31, no. 31, pp. 55–73, 2022, doi: 10.24330/ieja.1058413.
ISNAD
Leonardıs, Antonino et al. “Beyond Knuth’s Notation for Unimaginable Numbers Within Computational Number Theory”. International Electronic Journal of Algebra 31/31 (January 2022), 55-73. https://doi.org/10.24330/ieja.1058413.
JAMA
Leonardıs A, D’atrı G, Caldarola F. Beyond Knuth’s notation for unimaginable numbers within computational number theory. IEJA. 2022;31:55–73.
MLA
Leonardıs, Antonino et al. “Beyond Knuth’s Notation for Unimaginable Numbers Within Computational Number Theory”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 55-73, doi:10.24330/ieja.1058413.
Vancouver
Leonardıs A, D’atrı G, Caldarola F. Beyond Knuth’s notation for unimaginable numbers within computational number theory. IEJA. 2022;31(31):55-73.