Research Article
BibTex RIS Cite
Year 2024, , 82 - 89, 09.01.2024
https://doi.org/10.24330/ieja.1299720

Abstract

References

  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, Rings in which every homomorphic image is a Noetherian domain, Gulf J. Math., 2 (2014), 1-6.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214(1) (2010), 53-60.
  • C. Bakkari and N. Mahdou, On weakly coherent rings, Rocky Mountain J. Math., 44(3) (2014), 743-752.
  • R. Dastanpour and A. Ghorbani, Rings with divisibility on chains of ideals, Comm. Algebra, 45(7) (2017), 2889-2898.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.

Rings with divisibility on ascending chains of ideals

Year 2024, , 82 - 89, 09.01.2024
https://doi.org/10.24330/ieja.1299720

Abstract

According to Dastanpour and Ghorbani, a ring $R$ is said to satisfy divisibility on ascending chains of right ideals ($A C C_{d}$) if, for every ascending chain of right ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq I_{4} \subseteq \ldots $ of $R$, there exists an integer $k \in \mathbb{N}$ such that for each $i \geq k$, there exists an element $a_{i} \in R$ such that $I_{i} =a_{i} I_{i +1}$. In this paper, we examine the transfer of the $A C C_{d}$-condition on ideals to trivial ring extensions. Moreover, we investigate the connection between the $A C C_{d}$ on ideals and other ascending chain conditions. For example we will prove that if $R$ is a ring with $A C C_{d}$ on ideals,\ then $R$ has $A C C$ on prime ideals.

References

  • D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1(1) (2009), 3-56.
  • C. Bakkari, Rings in which every homomorphic image is a Noetherian domain, Gulf J. Math., 2 (2014), 1-6.
  • C. Bakkari, S. Kabbaj and N. Mahdou, Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214(1) (2010), 53-60.
  • C. Bakkari and N. Mahdou, On weakly coherent rings, Rocky Mountain J. Math., 44(3) (2014), 743-752.
  • R. Dastanpour and A. Ghorbani, Rings with divisibility on chains of ideals, Comm. Algebra, 45(7) (2017), 2889-2898.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • J. A. Huckaba, Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  • S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra, 32(10) (2004), 3937-3953.
  • B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Oussama Aymane Es Safı This is me

Najib Mahdou This is me

Mohamed Yousıf This is me

Early Pub Date May 24, 2023
Publication Date January 9, 2024
Published in Issue Year 2024

Cite

APA Safı, O. A. . E., Mahdou, N., & Yousıf, M. (2024). Rings with divisibility on ascending chains of ideals. International Electronic Journal of Algebra, 35(35), 82-89. https://doi.org/10.24330/ieja.1299720
AMA Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. January 2024;35(35):82-89. doi:10.24330/ieja.1299720
Chicago Safı, Oussama Aymane Es, Najib Mahdou, and Mohamed Yousıf. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 82-89. https://doi.org/10.24330/ieja.1299720.
EndNote Safı OAE, Mahdou N, Yousıf M (January 1, 2024) Rings with divisibility on ascending chains of ideals. International Electronic Journal of Algebra 35 35 82–89.
IEEE O. A. . E. Safı, N. Mahdou, and M. Yousıf, “Rings with divisibility on ascending chains of ideals”, IEJA, vol. 35, no. 35, pp. 82–89, 2024, doi: 10.24330/ieja.1299720.
ISNAD Safı, Oussama Aymane Es et al. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra 35/35 (January 2024), 82-89. https://doi.org/10.24330/ieja.1299720.
JAMA Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. 2024;35:82–89.
MLA Safı, Oussama Aymane Es et al. “Rings With Divisibility on Ascending Chains of Ideals”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 82-89, doi:10.24330/ieja.1299720.
Vancouver Safı OAE, Mahdou N, Yousıf M. Rings with divisibility on ascending chains of ideals. IEJA. 2024;35(35):82-9.