Research Article
BibTex RIS Cite
Year 2024, , 121 - 133, 12.07.2024
https://doi.org/10.24330/ieja.1476670

Abstract

References

  • M. H. Bien, T. H. Dung and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra, 71 (2023), 1948-1956.
  • M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl., 646 (2022), 119-131.
  • M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl., 679 (2023), 305-326.
  • M. H. Bien, T. N. Son, P. T. T. Thuy and L. Q. Truong, Products of unipotent matrices of index 2 over division rings, Submitted.
  • E. W. Ellers and J. Malzan, Products of reflections in GL(n;H), Linear Multilinear Algebra, 20(4) (1987), 281-324.
  • N. T. T. Ha, P. H. Nam and T. N. Son, Products of commutators of involutions in skew linear groups, Acta Math. Vietnam., Submitted.
  • X. Hou, Decomposition of infinite matrices into products of commutators of involutions, Linear Algebra Appl., 563 (2019), 231-239.
  • X. Hou, Decomposition of matrices into commutators of unipotent matrices of index 2, Electron. J. Linear Algebra, 37 (2021), 31-34.
  • X. Hou, S. Li and Q. Zheng, Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl., 532 (2017), 257-265.
  • J. P. E. Joven and A. T. Paras, Products of skew-involutions, Electron. J. Linear Algebra, 39 (2023), 136-150.
  • A. Kanel-Belov, B. Kunyavskii and E. Plotkin, Word equations in simple groups and polynomial equations in simple algebras, Vestnik St. Petersburg Univ. Math., 46 (2013), 3-13.
  • T. Y. Lam, A First Course in Noncommutative Rings, 2nd edition, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
  • D. W. Lewis, Quaternion algebras and the algebraic legacy of Hamilton's quaternions, Irish Math. Soc. Bull., 57 (2006), 41-64.
  • T. A. Loring, Factorization of matrices of quaternions, Expo. Math., 30 (2012), 250-267.
  • D. I. Merino and V. V. Sergeichuk, Littlewood's algorithm and quaternion matrices, Linear Algebra Appl., 298 (1999), 193-208.
  • I. Niven, Equations in quaternions, Amer. Math. Monthly, 48 (1941), 654-661.
  • C. de Seguins Pazzis, The sum and the product of two quadratic matrices: regular cases, Adv. Appl. Clifford Algebr., 32 (2022), 54 (43 pp).
  • T. N. Son, T. H. Dung, N. T. T. Ha and M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electron. J. Linear Algebra, 38 (2022), 123-130.
  • L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of stable rank 1, Linear Algebra Appl., 142 (1990), 263-277.
  • J. Voight, Quaternion Algebras, Graduate Texts in Mathematics, Vol. 288, Springer, 2021.
  • Z. X. Wan, Geometry of Matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  • G. Wang, T. Jiang, V. I. Vasil'ev and Z. Guo, On singular value decomposition for split quaternion matrices and applications in split quaternionic mechanics, J. Comput. Appl. Math., 436 (2024), 115447 (10 pp).
  • J. H. Wang and P. Y. Wu, Products of unipotent matrices of index 2, Linear Algebra Appl., 149 (1991), 111-123.
  • H. You, Decomposition of matrices into commutators of reflections, J. Syst. Sci. Complex., 16(1) (2003), 67-73.
  • F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21-57.
  • B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl., 347 (2002), 1-7.

Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$

Year 2024, , 121 - 133, 12.07.2024
https://doi.org/10.24330/ieja.1476670

Abstract

The aim of this paper is to show that if $\mathbb{H}$ is the real quaternion division ring and $n$ is an integer greater than $1,$ then every matrix in the special linear group $\mathrm{SL}_n(\mathbb{H})$ can be expressed as a product of at most three commutators of unipotent matrices of index $2$.

References

  • M. H. Bien, T. H. Dung and N. T. T. Ha, A certain decomposition of infinite invertible matrices over division algebras, Linear Multilinear Algebra, 71 (2023), 1948-1956.
  • M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Decompositions of matrices over division algebras into products of commutators, Linear Algebra Appl., 646 (2022), 119-131.
  • M. H. Bien, T. H. Dung, N. T. T. Ha and T. N. Son, Involution widths of skew linear groups generated by involutions, Linear Algebra Appl., 679 (2023), 305-326.
  • M. H. Bien, T. N. Son, P. T. T. Thuy and L. Q. Truong, Products of unipotent matrices of index 2 over division rings, Submitted.
  • E. W. Ellers and J. Malzan, Products of reflections in GL(n;H), Linear Multilinear Algebra, 20(4) (1987), 281-324.
  • N. T. T. Ha, P. H. Nam and T. N. Son, Products of commutators of involutions in skew linear groups, Acta Math. Vietnam., Submitted.
  • X. Hou, Decomposition of infinite matrices into products of commutators of involutions, Linear Algebra Appl., 563 (2019), 231-239.
  • X. Hou, Decomposition of matrices into commutators of unipotent matrices of index 2, Electron. J. Linear Algebra, 37 (2021), 31-34.
  • X. Hou, S. Li and Q. Zheng, Expressing infinite matrices over rings as products of involutions, Linear Algebra Appl., 532 (2017), 257-265.
  • J. P. E. Joven and A. T. Paras, Products of skew-involutions, Electron. J. Linear Algebra, 39 (2023), 136-150.
  • A. Kanel-Belov, B. Kunyavskii and E. Plotkin, Word equations in simple groups and polynomial equations in simple algebras, Vestnik St. Petersburg Univ. Math., 46 (2013), 3-13.
  • T. Y. Lam, A First Course in Noncommutative Rings, 2nd edition, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
  • D. W. Lewis, Quaternion algebras and the algebraic legacy of Hamilton's quaternions, Irish Math. Soc. Bull., 57 (2006), 41-64.
  • T. A. Loring, Factorization of matrices of quaternions, Expo. Math., 30 (2012), 250-267.
  • D. I. Merino and V. V. Sergeichuk, Littlewood's algorithm and quaternion matrices, Linear Algebra Appl., 298 (1999), 193-208.
  • I. Niven, Equations in quaternions, Amer. Math. Monthly, 48 (1941), 654-661.
  • C. de Seguins Pazzis, The sum and the product of two quadratic matrices: regular cases, Adv. Appl. Clifford Algebr., 32 (2022), 54 (43 pp).
  • T. N. Son, T. H. Dung, N. T. T. Ha and M. H. Bien, On decompositions of matrices into products of commutators of involutions, Electron. J. Linear Algebra, 38 (2022), 123-130.
  • L. N. Vaserstein and E. Wheland, Commutators and companion matrices over rings of stable rank 1, Linear Algebra Appl., 142 (1990), 263-277.
  • J. Voight, Quaternion Algebras, Graduate Texts in Mathematics, Vol. 288, Springer, 2021.
  • Z. X. Wan, Geometry of Matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  • G. Wang, T. Jiang, V. I. Vasil'ev and Z. Guo, On singular value decomposition for split quaternion matrices and applications in split quaternionic mechanics, J. Comput. Appl. Math., 436 (2024), 115447 (10 pp).
  • J. H. Wang and P. Y. Wu, Products of unipotent matrices of index 2, Linear Algebra Appl., 149 (1991), 111-123.
  • H. You, Decomposition of matrices into commutators of reflections, J. Syst. Sci. Complex., 16(1) (2003), 67-73.
  • F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21-57.
  • B. Zheng, Decomposition of matrices into commutators of involutions, Linear Algebra Appl., 347 (2002), 1-7.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Ha Nguyen Thi Thai

Dao Trong Toan This is me

Early Pub Date May 2, 2024
Publication Date July 12, 2024
Published in Issue Year 2024

Cite

APA Nguyen Thi Thai, H., & Toan, D. T. (2024). Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$. International Electronic Journal of Algebra, 36(36), 121-133. https://doi.org/10.24330/ieja.1476670
AMA Nguyen Thi Thai H, Toan DT. Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$. IEJA. July 2024;36(36):121-133. doi:10.24330/ieja.1476670
Chicago Nguyen Thi Thai, Ha, and Dao Trong Toan. “Products of Commutators of Unipotent Matrices of Index $2$ in $\mathrm{GL}_n(\mathbb H)$”. International Electronic Journal of Algebra 36, no. 36 (July 2024): 121-33. https://doi.org/10.24330/ieja.1476670.
EndNote Nguyen Thi Thai H, Toan DT (July 1, 2024) Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$. International Electronic Journal of Algebra 36 36 121–133.
IEEE H. Nguyen Thi Thai and D. T. Toan, “Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$”, IEJA, vol. 36, no. 36, pp. 121–133, 2024, doi: 10.24330/ieja.1476670.
ISNAD Nguyen Thi Thai, Ha - Toan, Dao Trong. “Products of Commutators of Unipotent Matrices of Index $2$ in $\mathrm{GL}_n(\mathbb H)$”. International Electronic Journal of Algebra 36/36 (July 2024), 121-133. https://doi.org/10.24330/ieja.1476670.
JAMA Nguyen Thi Thai H, Toan DT. Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$. IEJA. 2024;36:121–133.
MLA Nguyen Thi Thai, Ha and Dao Trong Toan. “Products of Commutators of Unipotent Matrices of Index $2$ in $\mathrm{GL}_n(\mathbb H)$”. International Electronic Journal of Algebra, vol. 36, no. 36, 2024, pp. 121-33, doi:10.24330/ieja.1476670.
Vancouver Nguyen Thi Thai H, Toan DT. Products of commutators of unipotent matrices of index $2$ in $\mathrm{GL}_n(\mathbb H)$. IEJA. 2024;36(36):121-33.