Research Article
BibTex RIS Cite

Year 2026, Volume: 39 Issue: 39, 99 - 115, 10.01.2026
https://doi.org/10.24330/ieja.1747239

Abstract

References

  • F. A. Berezin and F. I. Karpelevic, Lie algebras with supplementary structure, Math. USSR Sbornik, 6(2) (1968), 185-203.
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • M. Chaktoura and F. Szechtman, A note on orthogonal Lie algebras in dimension 4 viewed as a current Lie algebras, J. Lie Theory, 23(4) (2013), 1101-1103.
  • C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
  • K. H. Neeb and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canad. J. Math., 60(4) (2008), 892-922.
  • P. Zusmanovich, Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds, Linear Algebra Appl., 407 (2005), 71-104.
  • P. Zusmanovich, Invariants of Lie algebras extended over commutative algebras without unit, J. Nonlinear Math. Phys., 17(1) (2010), 87-102.

On cohomology groups of current Lie algebras

Year 2026, Volume: 39 Issue: 39, 99 - 115, 10.01.2026
https://doi.org/10.24330/ieja.1747239

Abstract

In this work we state a result that relates the cohomology groups of a Lie algebra $\frak g$ and a current Lie algebra $\frak g \otimes \mathcal{S}$, by means of a short exact sequence similar to the universal coefficients theorem for modules, where $\mathcal{S}$ is a finite dimensional, commutative and associative algebra with unit over a field $\Bbb F$. Using this result we determine the cohomology group of $\frak g \otimes \mathcal{S}$ where $\frak g$ is a semisimple Lie algebra.

References

  • F. A. Berezin and F. I. Karpelevic, Lie algebras with supplementary structure, Math. USSR Sbornik, 6(2) (1968), 185-203.
  • H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • M. Chaktoura and F. Szechtman, A note on orthogonal Lie algebras in dimension 4 viewed as a current Lie algebras, J. Lie Theory, 23(4) (2013), 1101-1103.
  • C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
  • K. H. Neeb and F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canad. J. Math., 60(4) (2008), 892-922.
  • P. Zusmanovich, Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds, Linear Algebra Appl., 407 (2005), 71-104.
  • P. Zusmanovich, Invariants of Lie algebras extended over commutative algebras without unit, J. Nonlinear Math. Phys., 17(1) (2010), 87-102.
There are 7 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Rosendo Garcia Delgado This is me

Submission Date January 11, 2025
Acceptance Date June 23, 2025
Early Pub Date July 21, 2025
Publication Date January 10, 2026
Published in Issue Year 2026 Volume: 39 Issue: 39

Cite

APA Garcia Delgado, R. (2026). On cohomology groups of current Lie algebras. International Electronic Journal of Algebra, 39(39), 99-115. https://doi.org/10.24330/ieja.1747239
AMA 1.Garcia Delgado R. On cohomology groups of current Lie algebras. IEJA. 2026;39(39):99-115. doi:10.24330/ieja.1747239
Chicago Garcia Delgado, Rosendo. 2026. “On Cohomology Groups of Current Lie Algebras”. International Electronic Journal of Algebra 39 (39): 99-115. https://doi.org/10.24330/ieja.1747239.
EndNote Garcia Delgado R (January 1, 2026) On cohomology groups of current Lie algebras. International Electronic Journal of Algebra 39 39 99–115.
IEEE [1]R. Garcia Delgado, “On cohomology groups of current Lie algebras”, IEJA, vol. 39, no. 39, pp. 99–115, Jan. 2026, doi: 10.24330/ieja.1747239.
ISNAD Garcia Delgado, Rosendo. “On Cohomology Groups of Current Lie Algebras”. International Electronic Journal of Algebra 39/39 (January 1, 2026): 99-115. https://doi.org/10.24330/ieja.1747239.
JAMA 1.Garcia Delgado R. On cohomology groups of current Lie algebras. IEJA. 2026;39:99–115.
MLA Garcia Delgado, Rosendo. “On Cohomology Groups of Current Lie Algebras”. International Electronic Journal of Algebra, vol. 39, no. 39, Jan. 2026, pp. 99-115, doi:10.24330/ieja.1747239.
Vancouver 1.Garcia Delgado R. On cohomology groups of current Lie algebras. IEJA [Internet]. 2026 Jan. 1;39(39):99-115. Available from: https://izlik.org/JA98ZT43UK