BibTex RIS Cite

(n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES

Year 2009, Volume: 6 Issue: 6, 119 - 133, 01.12.2009

Abstract

This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short)(for integers n ≥ 1 and m ≥ 0). We are mainly interested in studying syzygies of these modules. As consequences, we show that a module M has Gorenstein projective dimension at most m if and only if M ⊕ G is (1, m)-SG-projective for some Gorenstein projective module G. And, over rings of finite left finitistic flat dimension, that a module of finite Gorenstein projective dimension has finite projective dimension if and only if it has finite flat dimension.

References

  • M. Auslander, Anneaux de Gorenstein et torsion en alg`ebre commutative, Secr´etariat math´ematique, Paris, 1967, S´eminaire d’alg`ebre commutative dirig´e par Pierre Samuel, 1966/67. Texte r´edig´e, d’apr`es des expos´es de Mau- rice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro,
  • Ecole Normale Superieure de Jeunes Filles. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. 1969.
  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445.
  • D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl., 8 (2009), 219–227.
  • D. Bennis and N. Mahdou, Global Gorenstein Dimensions. Accepted for pub- lication in Proc. Amer. Math. Soc., Available from arXiv:0611358v4.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions of polynomial rings and of direct products of rings, Accepted for publication in Houston J. Math. Available from arXiv:0712.0126v2.
  • L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., Springer- Verlag, Berlin, 2000.
  • E. E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter, Berlin-New York, 2000.
  • E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633.
  • E. E. Enochs and O. M. G. Jenda, On Gorenstein injective modules, Comm. Algebra, 21 (1993), 3489–3501.
  • E. Enochs, O. M. G. Jenda and J. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc., 348 (1996), 3223–3234.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193.
  • G. Zhao and Z. Huang, n-Strongly Gorenstein Projective, Injective and Flat Modules, Available from arXiv:0904.3045v1.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Driss Bennis
  • Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202,
  • University S. M. Ben Abdellah, Fez, Morocco e-mail: driss bennis@hotmail.com

Year 2009, Volume: 6 Issue: 6, 119 - 133, 01.12.2009

Abstract

References

  • M. Auslander, Anneaux de Gorenstein et torsion en alg`ebre commutative, Secr´etariat math´ematique, Paris, 1967, S´eminaire d’alg`ebre commutative dirig´e par Pierre Samuel, 1966/67. Texte r´edig´e, d’apr`es des expos´es de Mau- rice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro,
  • Ecole Normale Superieure de Jeunes Filles. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. 1969.
  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445.
  • D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl., 8 (2009), 219–227.
  • D. Bennis and N. Mahdou, Global Gorenstein Dimensions. Accepted for pub- lication in Proc. Amer. Math. Soc., Available from arXiv:0611358v4.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions of polynomial rings and of direct products of rings, Accepted for publication in Houston J. Math. Available from arXiv:0712.0126v2.
  • L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., Springer- Verlag, Berlin, 2000.
  • E. E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter, Berlin-New York, 2000.
  • E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633.
  • E. E. Enochs and O. M. G. Jenda, On Gorenstein injective modules, Comm. Algebra, 21 (1993), 3489–3501.
  • E. Enochs, O. M. G. Jenda and J. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc., 348 (1996), 3223–3234.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193.
  • G. Zhao and Z. Huang, n-Strongly Gorenstein Projective, Injective and Flat Modules, Available from arXiv:0904.3045v1.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Driss Bennis
  • Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202,
  • University S. M. Ben Abdellah, Fez, Morocco e-mail: driss bennis@hotmail.com
There are 16 citations in total.

Details

Other ID JA25MG38ZE
Authors

Driss Bennis This is me

Publication Date December 1, 2009
Published in Issue Year 2009 Volume: 6 Issue: 6

Cite

APA Bennis, D. (2009). (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. International Electronic Journal of Algebra, 6(6), 119-133. https://izlik.org/JA45BG52MH
AMA 1.Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA. 2009;6(6):119-133. https://izlik.org/JA45BG52MH
Chicago Bennis, Driss. 2009. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra 6 (6): 119-33. https://izlik.org/JA45BG52MH.
EndNote Bennis D (December 1, 2009) (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. International Electronic Journal of Algebra 6 6 119–133.
IEEE [1]D. Bennis, “(n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES”, IEJA, vol. 6, no. 6, pp. 119–133, Dec. 2009, [Online]. Available: https://izlik.org/JA45BG52MH
ISNAD Bennis, Driss. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra 6/6 (December 1, 2009): 119-133. https://izlik.org/JA45BG52MH.
JAMA 1.Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA. 2009;6:119–133.
MLA Bennis, Driss. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra, vol. 6, no. 6, Dec. 2009, pp. 119-33, https://izlik.org/JA45BG52MH.
Vancouver 1.Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA [Internet]. 2009 Dec. 1;6(6):119-33. Available from: https://izlik.org/JA45BG52MH