Research Article
BibTex RIS Cite

A characterization of Gorenstein Dedekind domains

Year 2017, Volume: 22 Issue: 22, 97 - 102, 11.07.2017
https://doi.org/10.24330/ieja.325929
https://izlik.org/JA52XR22ZH

Abstract

In this paper, we show that a domain $R$ is a Gorenstein Dedekind
domain if and only if every divisible module is Gorenstein
injective; if and only if every divisible module is copure
injective.

References

  • S. Bazzoni and L. Salce, Almost perfect domains, Colloq. Math., 95(2) (2003), 285-301.
  • D. Bennis, A short survey on Gorenstein global dimension, Actes des rencontres du C.I.R.M., 2(2) (2010), 115-117.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, at resolvents and dimensions, Comment. Math. Univ. Carolin., 34(2) (1993), 203-211.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
  • X. H. Fu, H. Y. Zhu and N. Q. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra, 40(1) (2012), 343-359.
  • L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra, 321(1) (2009), 18-27.
  • R. Hamsher, On the structure of a one dimensional quotient field, J. Algebra, 19 (1971), 416-425.
  • S. B. Lee, h-Divisible modules, Comm. Algebra, 31(1) (2003), 513-525.
  • S. B. Lee, Weak-injective modules, Comm. Algebra, 34(1) (2006), 361-370.

Year 2017, Volume: 22 Issue: 22, 97 - 102, 11.07.2017
https://doi.org/10.24330/ieja.325929
https://izlik.org/JA52XR22ZH

Abstract

References

  • S. Bazzoni and L. Salce, Almost perfect domains, Colloq. Math., 95(2) (2003), 285-301.
  • D. Bennis, A short survey on Gorenstein global dimension, Actes des rencontres du C.I.R.M., 2(2) (2010), 115-117.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc., 138(2) (2010), 461-465.
  • E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, at resolvents and dimensions, Comment. Math. Univ. Carolin., 34(2) (1993), 203-211.
  • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220(4) (1995), 611-633.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
  • X. H. Fu, H. Y. Zhu and N. Q. Ding, On copure projective modules and copure projective dimensions, Comm. Algebra, 40(1) (2012), 343-359.
  • L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra, 321(1) (2009), 18-27.
  • R. Hamsher, On the structure of a one dimensional quotient field, J. Algebra, 19 (1971), 416-425.
  • S. B. Lee, h-Divisible modules, Comm. Algebra, 31(1) (2003), 513-525.
  • S. B. Lee, Weak-injective modules, Comm. Algebra, 34(1) (2006), 361-370.
There are 11 citations in total.

Details

Subjects Mathematical Sciences
Journal Section Research Article
Authors

Tao Xiong This is me

Publication Date July 11, 2017
DOI https://doi.org/10.24330/ieja.325929
IZ https://izlik.org/JA52XR22ZH
Published in Issue Year 2017 Volume: 22 Issue: 22

Cite

APA Xiong, T. (2017). A characterization of Gorenstein Dedekind domains. International Electronic Journal of Algebra, 22(22), 97-102. https://doi.org/10.24330/ieja.325929
AMA 1.Xiong T. A characterization of Gorenstein Dedekind domains. IEJA. 2017;22(22):97-102. doi:10.24330/ieja.325929
Chicago Xiong, Tao. 2017. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra 22 (22): 97-102. https://doi.org/10.24330/ieja.325929.
EndNote Xiong T (July 1, 2017) A characterization of Gorenstein Dedekind domains. International Electronic Journal of Algebra 22 22 97–102.
IEEE [1]T. Xiong, “A characterization of Gorenstein Dedekind domains”, IEJA, vol. 22, no. 22, pp. 97–102, July 2017, doi: 10.24330/ieja.325929.
ISNAD Xiong, Tao. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra 22/22 (July 1, 2017): 97-102. https://doi.org/10.24330/ieja.325929.
JAMA 1.Xiong T. A characterization of Gorenstein Dedekind domains. IEJA. 2017;22:97–102.
MLA Xiong, Tao. “A Characterization of Gorenstein Dedekind Domains”. International Electronic Journal of Algebra, vol. 22, no. 22, July 2017, pp. 97-102, doi:10.24330/ieja.325929.
Vancouver 1.Xiong T. A characterization of Gorenstein Dedekind domains. IEJA [Internet]. 2017 July 1;22(22):97-102. Available from: https://izlik.org/JA52XR22ZH