Research Article
BibTex RIS Cite

Year 2018, Volume: 23 Issue: 23, 153 - 156, 11.01.2018
https://doi.org/10.24330/ieja.373657
https://izlik.org/JA97DX62SY

Abstract

References

  • N. Epstein and J. Shapiro, Perinormality-a generalization of Krull domains, J. Algebra, 451 (2016), 65-84.
  • N. Epstein and J. Shapiro, Perinormality in pullbacks, to appear in J. Commut. Algebra, https://projecteuclid.org/euclid.jca/1491379230, arXiv:1511.06473v2 [math.AC].
  • M. D. Fried and M. Jarden, Field Arithmetic, Results in Mathematics and Related Areas (3), 11, Springer-Verlag, Berlin, 1986.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.

Perinormal polynomial domains

Year 2018, Volume: 23 Issue: 23, 153 - 156, 11.01.2018
https://doi.org/10.24330/ieja.373657
https://izlik.org/JA97DX62SY

Abstract

Let A be a domain. We relate the perinormality (as de ned by
Epstein and Shapiro) of A and A[X] for a narrow class of Noetherian domains.

References

  • N. Epstein and J. Shapiro, Perinormality-a generalization of Krull domains, J. Algebra, 451 (2016), 65-84.
  • N. Epstein and J. Shapiro, Perinormality in pullbacks, to appear in J. Commut. Algebra, https://projecteuclid.org/euclid.jca/1491379230, arXiv:1511.06473v2 [math.AC].
  • M. D. Fried and M. Jarden, Field Arithmetic, Results in Mathematics and Related Areas (3), 11, Springer-Verlag, Berlin, 1986.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.
There are 4 citations in total.

Details

Journal Section Research Article
Authors

Tiberiu Dumitrescu This is me

Anam Rani This is me

Publication Date January 11, 2018
DOI https://doi.org/10.24330/ieja.373657
IZ https://izlik.org/JA97DX62SY
Published in Issue Year 2018 Volume: 23 Issue: 23

Cite

APA Dumitrescu, T., & Rani, A. (2018). Perinormal polynomial domains. International Electronic Journal of Algebra, 23(23), 153-156. https://doi.org/10.24330/ieja.373657
AMA 1.Dumitrescu T, Rani A. Perinormal polynomial domains. IEJA. 2018;23(23):153-156. doi:10.24330/ieja.373657
Chicago Dumitrescu, Tiberiu, and Anam Rani. 2018. “Perinormal Polynomial Domains”. International Electronic Journal of Algebra 23 (23): 153-56. https://doi.org/10.24330/ieja.373657.
EndNote Dumitrescu T, Rani A (January 1, 2018) Perinormal polynomial domains. International Electronic Journal of Algebra 23 23 153–156.
IEEE [1]T. Dumitrescu and A. Rani, “Perinormal polynomial domains”, IEJA, vol. 23, no. 23, pp. 153–156, Jan. 2018, doi: 10.24330/ieja.373657.
ISNAD Dumitrescu, Tiberiu - Rani, Anam. “Perinormal Polynomial Domains”. International Electronic Journal of Algebra 23/23 (January 1, 2018): 153-156. https://doi.org/10.24330/ieja.373657.
JAMA 1.Dumitrescu T, Rani A. Perinormal polynomial domains. IEJA. 2018;23:153–156.
MLA Dumitrescu, Tiberiu, and Anam Rani. “Perinormal Polynomial Domains”. International Electronic Journal of Algebra, vol. 23, no. 23, Jan. 2018, pp. 153-6, doi:10.24330/ieja.373657.
Vancouver 1.Dumitrescu T, Rani A. Perinormal polynomial domains. IEJA [Internet]. 2018 Jan. 1;23(23):153-6. Available from: https://izlik.org/JA97DX62SY