BibTex RIS Cite

NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS

Year 2014, Volume: 16 Issue: 16, 53 - 65, 01.12.2014
https://doi.org/10.24330/ieja.266226

Abstract

In this article, we discuss the n-root closedness, root closedness,
seminormality, S-root closedness, S-closedness, F-closedess of PVDs. A valuation
domain, being integrally closed, is obviously root closed. So our interest
of study is for a class of non-valuation PVDs. Let R ⊂ B be a domain extension
such that R is a PVD and the common ideal P of R and B is a prime
ideal in R. If R is n-root closed (respectively root closed, seminormal, S-root
closed, S-closed, F-closed) in B, then R/P is PVD, which is n-root closed (respectively
root closed, seminormal, S-root closed, S-closed, F-closed) in B/P.
Further we study the relationship of atomic PVDs to atomic PVDs, SHFDs,
LHFDs and BVDs. We also discuss a relative ascent and descent in general
and particularly for the antimatter property of PVDs.

References

  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), 1-19.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Algebra, 152 (1992), 78-93.
  • D. F. Anderson, Root closure in integral domains, J. Algebra, 79 (1982), 51-59.
  • D. F. Anderson and S. T. Chapman, Overrings of half-factorial domains II, Comm. Algebra, 23(11) (1995), 3961-3976.
  • D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math, 32 (1980), 362-384.
  • D. F. Anderson and D. E. Dobbs, Root Closure in Integral Domains III, Canad. Math. Bull., 41(1) (1998), 3-9.
  • D. F. Anderson, D. E. Dobbs and J. A. Huckaba, On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448.
  • D. F. Anderson, D. E. Dobbs and M. Roitman, Root closure in commutative rings, Ann. Sci. Univ. Clermont-Ferrand II Math., 26 (1990), 1-11.
  • A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra, 28(5) (2000), 2358.
  • A. Badawi, D. F. Anderson and D. E. Dobbs, Pseudo-valuation Rings, Proc. Second International conference on comm. rings, Lecture notes in Pure and applied Maths., 185 (1996), 57-67.
  • E. Basttida and R.Gilmer, Overrings and divisorial ideals of rings of the form D + M , Michigan Math. J., 20 (1973), 79-95.
  • P. M. Cohn, Bezeout rings and their subrings, Proc. Camb. Phil. Soc., 64 (1968), 251-264.
  • J. Coykendall, D. E. Dobbs and B. Mullins, On integral domains with no atoms, Comm. Algebra, 27 (1999), 5813-5831.
  • T. Dumitrescu, T. Shah and M. Zafrullah, Domains whose overrings satisfy ACCP, Comm. Algebra, 28(9) (2000), 4403-4409.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1) (1978), 137-147.
  • J. Maney, Boundary valuation domains, J. Algebra, 273 (2004), 373-383.
  • N. Radu, S. O. Ibrahim Al-Salihi and T. Shah, Ascend and descend of factor- ization properties, Rev. Roumaine Math. Pures Appl., 45(4) (2000), 659-669.
  • T. Shah, Relative ascent and descent in a domain extension, Int. Electron. J. Algebra, 7 (2010), 34-46.
  • J. J. Watkins, Root and integral closure for R[[X]], J. Algebra, 75 (1982), 58.
  • M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, 15(9) (1987), 1895-1920.
  • A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc., 82(5) (1976), 721-723. Tariq Shah
  • Department of Mathematics Quaid-I-Azam University Islamabad, Pakistan e-mail: stshah@gmail.com Waheed Ahmad Khan Department of Mathematics and Statistics Caledonian College of Engineering P O Box 2322, Seeb 111, Sultanate of Oman e-mail: sirwak2003@yahoo.com
Year 2014, Volume: 16 Issue: 16, 53 - 65, 01.12.2014
https://doi.org/10.24330/ieja.266226

Abstract

References

  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), 1-19.
  • D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Algebra, 152 (1992), 78-93.
  • D. F. Anderson, Root closure in integral domains, J. Algebra, 79 (1982), 51-59.
  • D. F. Anderson and S. T. Chapman, Overrings of half-factorial domains II, Comm. Algebra, 23(11) (1995), 3961-3976.
  • D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math, 32 (1980), 362-384.
  • D. F. Anderson and D. E. Dobbs, Root Closure in Integral Domains III, Canad. Math. Bull., 41(1) (1998), 3-9.
  • D. F. Anderson, D. E. Dobbs and J. A. Huckaba, On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448.
  • D. F. Anderson, D. E. Dobbs and M. Roitman, Root closure in commutative rings, Ann. Sci. Univ. Clermont-Ferrand II Math., 26 (1990), 1-11.
  • A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra, 28(5) (2000), 2358.
  • A. Badawi, D. F. Anderson and D. E. Dobbs, Pseudo-valuation Rings, Proc. Second International conference on comm. rings, Lecture notes in Pure and applied Maths., 185 (1996), 57-67.
  • E. Basttida and R.Gilmer, Overrings and divisorial ideals of rings of the form D + M , Michigan Math. J., 20 (1973), 79-95.
  • P. M. Cohn, Bezeout rings and their subrings, Proc. Camb. Phil. Soc., 64 (1968), 251-264.
  • J. Coykendall, D. E. Dobbs and B. Mullins, On integral domains with no atoms, Comm. Algebra, 27 (1999), 5813-5831.
  • T. Dumitrescu, T. Shah and M. Zafrullah, Domains whose overrings satisfy ACCP, Comm. Algebra, 28(9) (2000), 4403-4409.
  • J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1) (1978), 137-147.
  • J. Maney, Boundary valuation domains, J. Algebra, 273 (2004), 373-383.
  • N. Radu, S. O. Ibrahim Al-Salihi and T. Shah, Ascend and descend of factor- ization properties, Rev. Roumaine Math. Pures Appl., 45(4) (2000), 659-669.
  • T. Shah, Relative ascent and descent in a domain extension, Int. Electron. J. Algebra, 7 (2010), 34-46.
  • J. J. Watkins, Root and integral closure for R[[X]], J. Algebra, 75 (1982), 58.
  • M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra, 15(9) (1987), 1895-1920.
  • A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc., 82(5) (1976), 721-723. Tariq Shah
  • Department of Mathematics Quaid-I-Azam University Islamabad, Pakistan e-mail: stshah@gmail.com Waheed Ahmad Khan Department of Mathematics and Statistics Caledonian College of Engineering P O Box 2322, Seeb 111, Sultanate of Oman e-mail: sirwak2003@yahoo.com
There are 22 citations in total.

Details

Other ID JA38BY53SZ
Journal Section Articles
Authors

Tariq Shah This is me

Waheed Ahmad Khan This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 16 Issue: 16

Cite

APA Shah, T., & Khan, W. A. (2014). NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS. International Electronic Journal of Algebra, 16(16), 53-65. https://doi.org/10.24330/ieja.266226
AMA Shah T, Khan WA. NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS. IEJA. December 2014;16(16):53-65. doi:10.24330/ieja.266226
Chicago Shah, Tariq, and Waheed Ahmad Khan. “NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS”. International Electronic Journal of Algebra 16, no. 16 (December 2014): 53-65. https://doi.org/10.24330/ieja.266226.
EndNote Shah T, Khan WA (December 1, 2014) NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS. International Electronic Journal of Algebra 16 16 53–65.
IEEE T. Shah and W. A. Khan, “NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS”, IEJA, vol. 16, no. 16, pp. 53–65, 2014, doi: 10.24330/ieja.266226.
ISNAD Shah, Tariq - Khan, Waheed Ahmad. “NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS”. International Electronic Journal of Algebra 16/16 (December 2014), 53-65. https://doi.org/10.24330/ieja.266226.
JAMA Shah T, Khan WA. NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS. IEJA. 2014;16:53–65.
MLA Shah, Tariq and Waheed Ahmad Khan. “NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS”. International Electronic Journal of Algebra, vol. 16, no. 16, 2014, pp. 53-65, doi:10.24330/ieja.266226.
Vancouver Shah T, Khan WA. NOTE ON PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS. IEJA. 2014;16(16):53-65.