BibTex RIS Cite

MAPPINGS BETWEEN MODULE LATTICES

Year 2014, Volume: 15 Issue: 15, 173 - 195, 01.06.2014
https://doi.org/10.24330/ieja.266246

Abstract

We examine the properties of certain mappings between the lattice
of ideals of a commutative ring R and the lattice of submodules of an
R-module M, in particular considering when these mappings are lattice homomorphisms.
We prove that the mapping λ from the lattice of ideals of R
to the lattice of submodules of M defined by λ(B) = BM for every ideal B
of R is a (lattice) isomorphism if and only if M is a finitely generated faithful
multiplication module. Moreover, for certain but not all rings R, there is an
isomorphism from the lattice of ideals of R to the lattice of submodules of an
R-module M if and only if the mapping λ is an isomorphism.

References

  • D. D. Anderson, Some remarks on multiplication ideals, Math. Japonica, (1980), 463-469.
  • D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal θ(M ), Comm. Algebra, 30(7)(2002), 3383-3390.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178.
  • Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, (4)(1988), 755-779.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.
  • D. W Sharpe and P. Vamos, Injective Modules, Cambridge Tracts in Math- ematics and Mathematical Physics 62, Cambridge Univ. Press, Cambridge, S. Singh and F. Mehdi, Multiplication modules, Canad. Math. Bull., 22 (1979), 98.
  • S. Singh and Y. Al-Shaniafi, Multiplication modules, Comm. Algebra, (6)(2001), 2597-2609.
  • S. Singh and Y. Al-Shaniafi, A companion ideal of a multiplication module, Period. Math. Hungar., 46(1)(2003), 1-8.
  • P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 422. Patrick F. Smith
  • Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: Patrick.Smith@glasgow.ac.uk
Year 2014, Volume: 15 Issue: 15, 173 - 195, 01.06.2014
https://doi.org/10.24330/ieja.266246

Abstract

References

  • D. D. Anderson, Some remarks on multiplication ideals, Math. Japonica, (1980), 463-469.
  • D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal θ(M ), Comm. Algebra, 30(7)(2002), 3383-3390.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178.
  • Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, (4)(1988), 755-779.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.
  • D. W Sharpe and P. Vamos, Injective Modules, Cambridge Tracts in Math- ematics and Mathematical Physics 62, Cambridge Univ. Press, Cambridge, S. Singh and F. Mehdi, Multiplication modules, Canad. Math. Bull., 22 (1979), 98.
  • S. Singh and Y. Al-Shaniafi, Multiplication modules, Comm. Algebra, (6)(2001), 2597-2609.
  • S. Singh and Y. Al-Shaniafi, A companion ideal of a multiplication module, Period. Math. Hungar., 46(1)(2003), 1-8.
  • P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 422. Patrick F. Smith
  • Department of Mathematics University of Glasgow Glasgow G12 8QW, Scotland UK e-mail: Patrick.Smith@glasgow.ac.uk
There are 11 citations in total.

Details

Other ID JA72VD22VT
Journal Section Articles
Authors

Patrick F. Smith This is me

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 15 Issue: 15

Cite

APA Smith, P. F. (2014). MAPPINGS BETWEEN MODULE LATTICES. International Electronic Journal of Algebra, 15(15), 173-195. https://doi.org/10.24330/ieja.266246
AMA Smith PF. MAPPINGS BETWEEN MODULE LATTICES. IEJA. June 2014;15(15):173-195. doi:10.24330/ieja.266246
Chicago Smith, Patrick F. “MAPPINGS BETWEEN MODULE LATTICES”. International Electronic Journal of Algebra 15, no. 15 (June 2014): 173-95. https://doi.org/10.24330/ieja.266246.
EndNote Smith PF (June 1, 2014) MAPPINGS BETWEEN MODULE LATTICES. International Electronic Journal of Algebra 15 15 173–195.
IEEE P. F. Smith, “MAPPINGS BETWEEN MODULE LATTICES”, IEJA, vol. 15, no. 15, pp. 173–195, 2014, doi: 10.24330/ieja.266246.
ISNAD Smith, Patrick F. “MAPPINGS BETWEEN MODULE LATTICES”. International Electronic Journal of Algebra 15/15 (June 2014), 173-195. https://doi.org/10.24330/ieja.266246.
JAMA Smith PF. MAPPINGS BETWEEN MODULE LATTICES. IEJA. 2014;15:173–195.
MLA Smith, Patrick F. “MAPPINGS BETWEEN MODULE LATTICES”. International Electronic Journal of Algebra, vol. 15, no. 15, 2014, pp. 173-95, doi:10.24330/ieja.266246.
Vancouver Smith PF. MAPPINGS BETWEEN MODULE LATTICES. IEJA. 2014;15(15):173-95.