BibTex RIS Cite

CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS

Year 2014, Volume: 15 Issue: 15, 196 - 207, 01.06.2014
https://doi.org/10.24330/ieja.266247

Abstract

In this paper, we consider centralizers of single elements in certain
Ore extensions, with a non-invertible endomorphism, of the ring of polynomials
in one variable over a field. We show that they are commutative and finitely
generated as algebras. We also show that for certain classes of elements their
centralizer is singly generated as an algebra.

References

  • S. A. Amitsur, Commutative linear differential operators, Pacific J. Math. 8 (1958), 1–10.
  • D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys., 15 (1974), 350–359.
  • V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz, 4(1) (1992), 75–97; translation in: St. Petersburg Math. J., 4(1), –92.
  • J. P. Bell and L. W. Small, Centralizers in domains of Gelfand-Kirillov dimen- sion 2, Bull. Lond. Math. Soc., 36(6) (2004), 779–785.
  • R. C. Carlson and K. R. Goodearl, Commutants of ordinary differential oper- ators, J. Differential Equations, 35(3) (1980), 339–365.
  • J. Dixmier, Sur les alg`ebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209–
  • K. R. Goodearl, Centralizers in differential, pseudodifferential, and fractional differential operator rings, Rocky Mountain J. Math., 13(4) (1983), 573–618.
  • K. R. Goodearl and R. B. Warfield, An introduction to noncommutative Noe- therian rings, second ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004.
  • L. Hellstr¨om and S. D. Silvestrov, Ergodipotent maps and commutativity of elements in noncommutative rings and algebras with twisted intertwining, J. Algebra, 314(1) (2007), 17–41.
  • L. Makar-Limanov, Centralizers in the quantum plane algebra, Studies in Lie theory, Progr. Math., vol. 243, Birkh¨auser Boston, Boston, MA, 2006, pp. 411–
  • J. Richter, Burchnall-Chaundy theory for Ore extensions, Proceedings of the AGMP, Springer-Verlag, (to appear). X. Tang, Maximal commutative subalgebras of certain skew polynomial rings, Johan Richter Centre for Mathematical Sciences Lund University Box 118, SE-22199 Lund, Sweden e-mail: johanr@maths.lth.se Sergei Silvestrov
  • Division of Applied Mathematics The School of Education, Culture and Communication M¨alardalen University Box 883, SE-72123 V¨aster˚as, Sweden e-mail: sergei.silvestrov@mdh.se
Year 2014, Volume: 15 Issue: 15, 196 - 207, 01.06.2014
https://doi.org/10.24330/ieja.266247

Abstract

References

  • S. A. Amitsur, Commutative linear differential operators, Pacific J. Math. 8 (1958), 1–10.
  • D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys., 15 (1974), 350–359.
  • V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz, 4(1) (1992), 75–97; translation in: St. Petersburg Math. J., 4(1), –92.
  • J. P. Bell and L. W. Small, Centralizers in domains of Gelfand-Kirillov dimen- sion 2, Bull. Lond. Math. Soc., 36(6) (2004), 779–785.
  • R. C. Carlson and K. R. Goodearl, Commutants of ordinary differential oper- ators, J. Differential Equations, 35(3) (1980), 339–365.
  • J. Dixmier, Sur les alg`ebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209–
  • K. R. Goodearl, Centralizers in differential, pseudodifferential, and fractional differential operator rings, Rocky Mountain J. Math., 13(4) (1983), 573–618.
  • K. R. Goodearl and R. B. Warfield, An introduction to noncommutative Noe- therian rings, second ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004.
  • L. Hellstr¨om and S. D. Silvestrov, Ergodipotent maps and commutativity of elements in noncommutative rings and algebras with twisted intertwining, J. Algebra, 314(1) (2007), 17–41.
  • L. Makar-Limanov, Centralizers in the quantum plane algebra, Studies in Lie theory, Progr. Math., vol. 243, Birkh¨auser Boston, Boston, MA, 2006, pp. 411–
  • J. Richter, Burchnall-Chaundy theory for Ore extensions, Proceedings of the AGMP, Springer-Verlag, (to appear). X. Tang, Maximal commutative subalgebras of certain skew polynomial rings, Johan Richter Centre for Mathematical Sciences Lund University Box 118, SE-22199 Lund, Sweden e-mail: johanr@maths.lth.se Sergei Silvestrov
  • Division of Applied Mathematics The School of Education, Culture and Communication M¨alardalen University Box 883, SE-72123 V¨aster˚as, Sweden e-mail: sergei.silvestrov@mdh.se
There are 12 citations in total.

Details

Other ID JA36FT97AG
Journal Section Articles
Authors

Johan Richter This is me

Sergei Silvestrov This is me

Publication Date June 1, 2014
Published in Issue Year 2014 Volume: 15 Issue: 15

Cite

APA Richter, J., & Silvestrov, S. (2014). CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. International Electronic Journal of Algebra, 15(15), 196-207. https://doi.org/10.24330/ieja.266247
AMA Richter J, Silvestrov S. CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. IEJA. June 2014;15(15):196-207. doi:10.24330/ieja.266247
Chicago Richter, Johan, and Sergei Silvestrov. “CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS”. International Electronic Journal of Algebra 15, no. 15 (June 2014): 196-207. https://doi.org/10.24330/ieja.266247.
EndNote Richter J, Silvestrov S (June 1, 2014) CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. International Electronic Journal of Algebra 15 15 196–207.
IEEE J. Richter and S. Silvestrov, “CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS”, IEJA, vol. 15, no. 15, pp. 196–207, 2014, doi: 10.24330/ieja.266247.
ISNAD Richter, Johan - Silvestrov, Sergei. “CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS”. International Electronic Journal of Algebra 15/15 (June 2014), 196-207. https://doi.org/10.24330/ieja.266247.
JAMA Richter J, Silvestrov S. CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. IEJA. 2014;15:196–207.
MLA Richter, Johan and Sergei Silvestrov. “CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS”. International Electronic Journal of Algebra, vol. 15, no. 15, 2014, pp. 196-07, doi:10.24330/ieja.266247.
Vancouver Richter J, Silvestrov S. CENTRALIZERS IN ORE EXTENSIONS OF POLYNOMIAL RINGS. IEJA. 2014;15(15):196-207.