BibTex RIS Cite

ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS

Year 2013, Volume: 14 Issue: 14, 10 - 18, 01.12.2013

Abstract

We prove that a left GP-V -ring is right non-singular. We also give some properties of left GP-V0-rings. Some characterizations of strongly regular rings and biregular rings are also given.

References

  • H.E. Abulkheir and G.F. Birkenmeier, Right complement bounded semiprime rings, Acta. Math. Hungar., 70(3) (1996), 227-235.
  • J. Chen and N. Ding, On regularity of rings, Algebra Colloq., 8(3) (2001), 274.
  • X. Guangshi, On GP -V -rings and characterizations of strongly regular rings, Northeast. Math. J., 18(4) (2002), 291-297.
  • Y. Hirano and H. Tominaga, Regular rings, V -rings and their generalizations, Hiroshima Math. J., 9 (1979), 137-149.
  • M. B. Rege, On von Neumann regular rings and SF -rings, Math. Japonica, (6) (1986), 927-936.
  • T. Subedi and A.M. Buhphang, On weakly regular rings and generalizations of V -rings, Int. Electron. J. Algebra, 10 (2011), 162-173.
  • R. Yue Chi Ming, On von Neumann regular rings, Proc. Edinburgh Math. Soc., 19 (1974), 89-91.
  • R. Yue Chi Ming, On quasi injectivity and von Neumann regularity, Monatsh. Math., 95 (1983), 25-32.
  • R. Yue Chi Ming, On biregularity and regularity, Comm. Algebra, 20 (1992), 759.
  • R. Yue Chi Ming, On injectivity and p-injectivity, II, Soochow J. Math., 21 (1995), 401-412.
  • R. Yue Chi Ming, On rings close to regular and p-injectivity, Comment. Math. Univ. Carolin., 47(2) (2006), 203-212.
  • H. Zhou, Left SF -rings and regular rings, Comm. Algebra, 35 (2007), 3842- Tikaram Subedi
  • Department of Mathematics National Institute of Technology Meghalaya Shillong, India. email: tsubedi2010@gmail.com A. M. Buhpang
  • Department of Mathematics North Eastern Hill University Shillong, India. e-mail: ardeline17@gmail.com
Year 2013, Volume: 14 Issue: 14, 10 - 18, 01.12.2013

Abstract

References

  • H.E. Abulkheir and G.F. Birkenmeier, Right complement bounded semiprime rings, Acta. Math. Hungar., 70(3) (1996), 227-235.
  • J. Chen and N. Ding, On regularity of rings, Algebra Colloq., 8(3) (2001), 274.
  • X. Guangshi, On GP -V -rings and characterizations of strongly regular rings, Northeast. Math. J., 18(4) (2002), 291-297.
  • Y. Hirano and H. Tominaga, Regular rings, V -rings and their generalizations, Hiroshima Math. J., 9 (1979), 137-149.
  • M. B. Rege, On von Neumann regular rings and SF -rings, Math. Japonica, (6) (1986), 927-936.
  • T. Subedi and A.M. Buhphang, On weakly regular rings and generalizations of V -rings, Int. Electron. J. Algebra, 10 (2011), 162-173.
  • R. Yue Chi Ming, On von Neumann regular rings, Proc. Edinburgh Math. Soc., 19 (1974), 89-91.
  • R. Yue Chi Ming, On quasi injectivity and von Neumann regularity, Monatsh. Math., 95 (1983), 25-32.
  • R. Yue Chi Ming, On biregularity and regularity, Comm. Algebra, 20 (1992), 759.
  • R. Yue Chi Ming, On injectivity and p-injectivity, II, Soochow J. Math., 21 (1995), 401-412.
  • R. Yue Chi Ming, On rings close to regular and p-injectivity, Comment. Math. Univ. Carolin., 47(2) (2006), 203-212.
  • H. Zhou, Left SF -rings and regular rings, Comm. Algebra, 35 (2007), 3842- Tikaram Subedi
  • Department of Mathematics National Institute of Technology Meghalaya Shillong, India. email: tsubedi2010@gmail.com A. M. Buhpang
  • Department of Mathematics North Eastern Hill University Shillong, India. e-mail: ardeline17@gmail.com
There are 14 citations in total.

Details

Other ID JA83PR87ZF
Journal Section Articles
Authors

Tikaram Subedi This is me

Ardeline Mary Buhphang This is me

Publication Date December 1, 2013
Published in Issue Year 2013 Volume: 14 Issue: 14

Cite

APA Subedi, T., & Buhphang, A. M. (2013). ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS. International Electronic Journal of Algebra, 14(14), 10-18.
AMA Subedi T, Buhphang AM. ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS. IEJA. December 2013;14(14):10-18.
Chicago Subedi, Tikaram, and Ardeline Mary Buhphang. “ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS”. International Electronic Journal of Algebra 14, no. 14 (December 2013): 10-18.
EndNote Subedi T, Buhphang AM (December 1, 2013) ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS. International Electronic Journal of Algebra 14 14 10–18.
IEEE T. Subedi and A. M. Buhphang, “ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS”, IEJA, vol. 14, no. 14, pp. 10–18, 2013.
ISNAD Subedi, Tikaram - Buhphang, Ardeline Mary. “ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS”. International Electronic Journal of Algebra 14/14 (December 2013), 10-18.
JAMA Subedi T, Buhphang AM. ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS. IEJA. 2013;14:10–18.
MLA Subedi, Tikaram and Ardeline Mary Buhphang. “ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS”. International Electronic Journal of Algebra, vol. 14, no. 14, 2013, pp. 10-18.
Vancouver Subedi T, Buhphang AM. ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS. IEJA. 2013;14(14):10-8.