BibTex RIS Cite

EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES

Year 2013, Volume: 13 Issue: 13, 109 - 119, 01.06.2013

Abstract

Let R be a commutative ring with 1 6= 0. The zero-divisor graph of
R is the (undirected) graph whose vertices consist of the nonzero zero-divisors
of R such that two distinct vertices x and y are adjacent if and only if xy = 0.
Given an integer k > 1, let Ak be the adjacency matrix of the zero-divisor
graph of the finite Boolean ring of order 2k. In this paper, it is proved that
the eigenvalues of Ak are completely determined by the eigenvalues given by
two (k − 1) × (k − 1) Pascal-type matrices Pk and Qk. Multiplicities are also
determined.

References

  • L. Aceto and D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly, 108(3) (2001), 232–245.
  • D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, (2011), 23–45.
  • D.F Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
  • M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
  • I. Beck, Coloring of Commutative Rings, J. Algebra, 116 (1988), 208–226.
  • L. Carlitz, The characteristic polynomial of a certain matrix of binomial coef- ficients, The Fibonacci Quarterly, 3(2) (1965), 81–89.
  • C. Cooper and R.E. Kennedy, Proof of a result by Jarden by generalizing a proof of Carlitz, The Fibonacci Quarterly, 33(4) (1995), 304–310.
  • C. Cooper and R.S. Melham, The eigenvectors of a certain matrix of binomial coefficients, The Fibonacci Quarterly, 38(2) (2000), 123–126.
  • D. Cvetkovi´c, P. Rowlinson and S. Simi´c, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2009.
  • F.R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206–214.
  • C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2004.
  • W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226/228 (1995), 593–616.
  • J.D. LaGrange, A combinatorial development of Fibonacci and Lucas numbers in graph spectra, preprint.
  • J.D. LaGrange, Boolean rings and reciprocal eigenvalue properties, Linear Al- gebra Appl., 436 (2012), 1863–1871.
  • J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Alge- bra, 315 (2007), 600–611.
  • J.D. LaGrange, Spectra of Boolean graphs and certain matrices of binomial coefficients, Int. Electron. J. Algebra, 9 (2011), 78–84.
  • R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745–750.
  • D. Lu and T. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra, 35 (2007), 3855–3864.
  • A. Mohammadian, On zero-divisor graphs of Boolean rings, Pacific J. Math., 251 (2011), 375–383.
  • S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30 (2002), 3533–3558. John D. LaGrange
  • Division of Natural and Behavioral Sciences
  • Lindsey Wilson College
  • Columbia, Kentucky 42728, USA
  • e-mail: lagrangej@lindsey.edu
Year 2013, Volume: 13 Issue: 13, 109 - 119, 01.06.2013

Abstract

References

  • L. Aceto and D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly, 108(3) (2001), 232–245.
  • D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, (2011), 23–45.
  • D.F Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
  • M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
  • I. Beck, Coloring of Commutative Rings, J. Algebra, 116 (1988), 208–226.
  • L. Carlitz, The characteristic polynomial of a certain matrix of binomial coef- ficients, The Fibonacci Quarterly, 3(2) (1965), 81–89.
  • C. Cooper and R.E. Kennedy, Proof of a result by Jarden by generalizing a proof of Carlitz, The Fibonacci Quarterly, 33(4) (1995), 304–310.
  • C. Cooper and R.S. Melham, The eigenvectors of a certain matrix of binomial coefficients, The Fibonacci Quarterly, 38(2) (2000), 123–126.
  • D. Cvetkovi´c, P. Rowlinson and S. Simi´c, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2009.
  • F.R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206–214.
  • C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2004.
  • W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226/228 (1995), 593–616.
  • J.D. LaGrange, A combinatorial development of Fibonacci and Lucas numbers in graph spectra, preprint.
  • J.D. LaGrange, Boolean rings and reciprocal eigenvalue properties, Linear Al- gebra Appl., 436 (2012), 1863–1871.
  • J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Alge- bra, 315 (2007), 600–611.
  • J.D. LaGrange, Spectra of Boolean graphs and certain matrices of binomial coefficients, Int. Electron. J. Algebra, 9 (2011), 78–84.
  • R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745–750.
  • D. Lu and T. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra, 35 (2007), 3855–3864.
  • A. Mohammadian, On zero-divisor graphs of Boolean rings, Pacific J. Math., 251 (2011), 375–383.
  • S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30 (2002), 3533–3558. John D. LaGrange
  • Division of Natural and Behavioral Sciences
  • Lindsey Wilson College
  • Columbia, Kentucky 42728, USA
  • e-mail: lagrangej@lindsey.edu
There are 24 citations in total.

Details

Other ID JA42VZ66YA
Journal Section Articles
Authors

John D. Lagrange This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 13 Issue: 13

Cite

APA Lagrange, J. D. (2013). EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES. International Electronic Journal of Algebra, 13(13), 109-119.
AMA Lagrange JD. EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES. IEJA. June 2013;13(13):109-119.
Chicago Lagrange, John D. “EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES”. International Electronic Journal of Algebra 13, no. 13 (June 2013): 109-19.
EndNote Lagrange JD (June 1, 2013) EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES. International Electronic Journal of Algebra 13 13 109–119.
IEEE J. D. Lagrange, “EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES”, IEJA, vol. 13, no. 13, pp. 109–119, 2013.
ISNAD Lagrange, John D. “EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES”. International Electronic Journal of Algebra 13/13 (June 2013), 109-119.
JAMA Lagrange JD. EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES. IEJA. 2013;13:109–119.
MLA Lagrange, John D. “EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES”. International Electronic Journal of Algebra, vol. 13, no. 13, 2013, pp. 109-1.
Vancouver Lagrange JD. EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES. IEJA. 2013;13(13):109-1.