BibTex RIS Cite

SOME RESULTS ON COFINITE MODULES

Year 2012, Volume: 11 Issue: 11, 82 - 95, 01.06.2012

Abstract

Let R be a Noetherian ring and a be a proper ideal of R. We
generalize the Rees characterization of grade for a-cofinite modules and as a
consequence, we extend Grothendieck’s Non-vanishing Theorem. We also generalize
the classical Auslander-Buchsbaum and Bass formulas.

References

  • M. Aghapournahr and L. Melkersson, CoŞniteness and coassociated primes of local cohomology modules, Math. Scand., 105(7) (2009), 161-170.
  • K. Bahmanpour and R. Naghipour, CoŞniteness of local cohomology modules for ideals of small dimension, J. Algebra, 321 (2009), 1997-2011.
  • R. G. Belshoff, E. E. Enochs and J. R. Garcia Rozas, Generalized Matlis du- ality, Proc. Amer. Math. Soc., 128(5) (2000), 1307-1312.
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology: An algebraic intro- duction with geometric applications, Cambridge University Press, Cambridge, W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge 1993.
  • S. Choi and S. Iyengar, On the depth formula for modules over local rings, Comm. Algebra, 29(7) (2001), 3135-3143.
  • L. G. Chouinard II, On Şnite weak and injective dimension, Proc. Amer. Math. Soc., 60 (1976), 57-60.
  • D. DelŞno and T. Marley, CoŞnite modules and local cohomology, J. Pure Appl. Algebra, 121(1) (1997), 45-52.
  • A. Grothendieck, Cohomologie locale des faisceaux coh´erents et th´eor`emes de Lefshetz locaux et globaux (SGA2). North-Holland, Amsterdam, 1968.
  • R. Hartshorne, Affine duality and coŞniteness, Invent. Math., 9 (1970), 145
  • M. Hellus, On the set of associated primes of a local cohomology module, J. Algebra, 237(1) (2001), 406-419.
  • C. Huneke, Problems on Local Cohomology, Free resolutions in commutative algebra and algebraic geometry. Res. Notes Math., 2 (1992), 93-108.
  • C. Huneke and J. Koh, CoŞniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc., 110 (1991), 421-429.
  • C. Huneke and R. Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc., 339(2) (1993), 765-779.
  • F. Ischebeck, Eine Dualit¨at zwischen den Funktoren Ext und Tor, J. Algebra, (1969), 510-531.
  • M. Katzman, An example of an inŞnite set of associated primes of a local cohomology module, J. Algebra, 252(1) (2002), 161-166.
  • K.-I. Kawasaki, CoŞniteness of local cohomology modules for principal ideals, Bull. London. Math. Soc., 30(3) (1998),241-246.
  • G. Lyubeznik, Finiteness properties of local cohomology modules for regular local rings of mixed characteristic: the unramiŞed case, Comm. Algebra, 28(12) (2000), 5867-5882.
  • A. MaŞ, Some results on local cohomology modules, Arch. Math. (Basel), 87(3) (2006), 211-216.
  • L. Melkersson, Properties of coŞnite modules and applications to local coho- mology, Math. Proc. Camb. Phil. Soc., 125(3) (1999), 417-423.
  • L. Melkersson, Modules coŞnite with respect to an ideal, J. Algebra, 285(2) (2005), 649-668.
  • M. S. Osborne, Basic Homological Algebra, Springer-Verlag, New York, 2000.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.
  • P. Rudlof, On minimax and related modules, Canad. J. Math., 44(1) (1992), 166.
  • A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett., (2000), 165-176.
  • S. Yassemi, Width of complexes of modules, Acta. Math. Vietnam, 23 (1998), 169.
  • K.-I. Yoshida, CoŞniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J., 147 (1997), 179-191.
  • H. Z¨oschinger, Minimax modules, J. Algebra, 102(1) (1986), 1-32.
  • H. Z¨oschinger,Uber die Maximalbedingung f¨ur radikalvolle Untermoduln, ¨ Hokkaido Math. J., 17(1) (1988), 101-116. A. R. Naghipour
  • Department of Mathematics Faculty of Science Shahrekord University Shahrekord, Iran e-mail: naghipour@sci.sku.ac.ir
Year 2012, Volume: 11 Issue: 11, 82 - 95, 01.06.2012

Abstract

References

  • M. Aghapournahr and L. Melkersson, CoŞniteness and coassociated primes of local cohomology modules, Math. Scand., 105(7) (2009), 161-170.
  • K. Bahmanpour and R. Naghipour, CoŞniteness of local cohomology modules for ideals of small dimension, J. Algebra, 321 (2009), 1997-2011.
  • R. G. Belshoff, E. E. Enochs and J. R. Garcia Rozas, Generalized Matlis du- ality, Proc. Amer. Math. Soc., 128(5) (2000), 1307-1312.
  • M. P. Brodmann and R. Y. Sharp, Local Cohomology: An algebraic intro- duction with geometric applications, Cambridge University Press, Cambridge, W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge 1993.
  • S. Choi and S. Iyengar, On the depth formula for modules over local rings, Comm. Algebra, 29(7) (2001), 3135-3143.
  • L. G. Chouinard II, On Şnite weak and injective dimension, Proc. Amer. Math. Soc., 60 (1976), 57-60.
  • D. DelŞno and T. Marley, CoŞnite modules and local cohomology, J. Pure Appl. Algebra, 121(1) (1997), 45-52.
  • A. Grothendieck, Cohomologie locale des faisceaux coh´erents et th´eor`emes de Lefshetz locaux et globaux (SGA2). North-Holland, Amsterdam, 1968.
  • R. Hartshorne, Affine duality and coŞniteness, Invent. Math., 9 (1970), 145
  • M. Hellus, On the set of associated primes of a local cohomology module, J. Algebra, 237(1) (2001), 406-419.
  • C. Huneke, Problems on Local Cohomology, Free resolutions in commutative algebra and algebraic geometry. Res. Notes Math., 2 (1992), 93-108.
  • C. Huneke and J. Koh, CoŞniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc., 110 (1991), 421-429.
  • C. Huneke and R. Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc., 339(2) (1993), 765-779.
  • F. Ischebeck, Eine Dualit¨at zwischen den Funktoren Ext und Tor, J. Algebra, (1969), 510-531.
  • M. Katzman, An example of an inŞnite set of associated primes of a local cohomology module, J. Algebra, 252(1) (2002), 161-166.
  • K.-I. Kawasaki, CoŞniteness of local cohomology modules for principal ideals, Bull. London. Math. Soc., 30(3) (1998),241-246.
  • G. Lyubeznik, Finiteness properties of local cohomology modules for regular local rings of mixed characteristic: the unramiŞed case, Comm. Algebra, 28(12) (2000), 5867-5882.
  • A. MaŞ, Some results on local cohomology modules, Arch. Math. (Basel), 87(3) (2006), 211-216.
  • L. Melkersson, Properties of coŞnite modules and applications to local coho- mology, Math. Proc. Camb. Phil. Soc., 125(3) (1999), 417-423.
  • L. Melkersson, Modules coŞnite with respect to an ideal, J. Algebra, 285(2) (2005), 649-668.
  • M. S. Osborne, Basic Homological Algebra, Springer-Verlag, New York, 2000.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, San Diego, 1979.
  • P. Rudlof, On minimax and related modules, Canad. J. Math., 44(1) (1992), 166.
  • A. K. Singh, p-torsion elements in local cohomology modules, Math. Res. Lett., (2000), 165-176.
  • S. Yassemi, Width of complexes of modules, Acta. Math. Vietnam, 23 (1998), 169.
  • K.-I. Yoshida, CoŞniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J., 147 (1997), 179-191.
  • H. Z¨oschinger, Minimax modules, J. Algebra, 102(1) (1986), 1-32.
  • H. Z¨oschinger,Uber die Maximalbedingung f¨ur radikalvolle Untermoduln, ¨ Hokkaido Math. J., 17(1) (1988), 101-116. A. R. Naghipour
  • Department of Mathematics Faculty of Science Shahrekord University Shahrekord, Iran e-mail: naghipour@sci.sku.ac.ir
There are 29 citations in total.

Details

Other ID JA68SV32CN
Journal Section Articles
Authors

A. R. Naghipour This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 11 Issue: 11

Cite

APA Naghipour, A. R. (2012). SOME RESULTS ON COFINITE MODULES. International Electronic Journal of Algebra, 11(11), 82-95.
AMA Naghipour AR. SOME RESULTS ON COFINITE MODULES. IEJA. June 2012;11(11):82-95.
Chicago Naghipour, A. R. “SOME RESULTS ON COFINITE MODULES”. International Electronic Journal of Algebra 11, no. 11 (June 2012): 82-95.
EndNote Naghipour AR (June 1, 2012) SOME RESULTS ON COFINITE MODULES. International Electronic Journal of Algebra 11 11 82–95.
IEEE A. R. Naghipour, “SOME RESULTS ON COFINITE MODULES”, IEJA, vol. 11, no. 11, pp. 82–95, 2012.
ISNAD Naghipour, A. R. “SOME RESULTS ON COFINITE MODULES”. International Electronic Journal of Algebra 11/11 (June 2012), 82-95.
JAMA Naghipour AR. SOME RESULTS ON COFINITE MODULES. IEJA. 2012;11:82–95.
MLA Naghipour, A. R. “SOME RESULTS ON COFINITE MODULES”. International Electronic Journal of Algebra, vol. 11, no. 11, 2012, pp. 82-95.
Vancouver Naghipour AR. SOME RESULTS ON COFINITE MODULES. IEJA. 2012;11(11):82-95.