BibTex RIS Cite

L2-PRIME AND DIMENSIONAL MODULES

Year 2010, Volume: 7 Issue: 7, 47 - 58, 01.06.2010

Abstract

We introduce a map κ that generalizes Krull and Noetherian dimensions. If MR finitely generates all fully invariant submodules and has acc on them, there are only a finite number of minimal L2-prime submodules Pi(1 ≤ i ≤ n) and when defined, κ(M) = κ(M/Pj ) for some j. Here, each M/Pi is a prime R-module, and in particular, M has finite length if every irreducible prime submodule of M is maximal. Quasi-projective L2-prime Rmodule with non-zero socle are investigated and some applications are then given when κ(M) means the Krull dimension or the injective dimension.

References

  • T. Albu and P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J. Math., 29(4) (1999), 1153–1165.
  • L. Bican, P. Jambor, T. Kepka and P. Nˇemec, Prime and coprime modules, Fund. Math., 57 (1980), 33–45.
  • J. Chen, N. Ding and M. F. Yousif, On Noetherian rings with essential socle, J. Aust. Math. Soc., 76(1)(2004), 39–49.
  • N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman, Harlow, 1994.
  • K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second Edition, London Mathematical Society Student Texts, Vol. 16, Cambridge University Press, Cambridge, 2004.
  • A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243 (2001), 765–779.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14 (2007), 489–496.
  • O. A. S. Karamzadeh and N. Shirali, On the countability of Noetherian dimen- sion of modules, Comm. Algebra, 32(10) (2004), 4073–4083.
  • J. Lambek and G. Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra, 25 (1973) 364–389.
  • B. Lemonnier, Deviation des ensembless et groupes Abeliens Totalement Or- donnes, Bull. Sci. Math., 96 (1972) 289–303.
  • C. Lomp, Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions, J. Algebra Appl., 4(1) (2005), 77–97.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley- Interscience, New York, 1987.
  • A. C¸ . ¨Ozcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., (3) (2006), 533–545.
  • P. F. Smith, Radical submodules and uniform dimension of modules, Turkish J. Math., 28(3) (2004), 255–270.
  • P. F. Smith and A. R. Woodward, Krull dimension of bimodules, J. Algebra, (1) (2007), 405–412.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, Philadelphia, 1991. M. R. Vedadi
  • Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran e-mail: mrvedadi@cc.iut.ac.ir
Year 2010, Volume: 7 Issue: 7, 47 - 58, 01.06.2010

Abstract

References

  • T. Albu and P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J. Math., 29(4) (1999), 1153–1165.
  • L. Bican, P. Jambor, T. Kepka and P. Nˇemec, Prime and coprime modules, Fund. Math., 57 (1980), 33–45.
  • J. Chen, N. Ding and M. F. Yousif, On Noetherian rings with essential socle, J. Aust. Math. Soc., 76(1)(2004), 39–49.
  • N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Longman, Harlow, 1994.
  • K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommuta- tive Noetherian Rings, Second Edition, London Mathematical Society Student Texts, Vol. 16, Cambridge University Press, Cambridge, 2004.
  • A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243 (2001), 765–779.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14 (2007), 489–496.
  • O. A. S. Karamzadeh and N. Shirali, On the countability of Noetherian dimen- sion of modules, Comm. Algebra, 32(10) (2004), 4073–4083.
  • J. Lambek and G. Michler, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra, 25 (1973) 364–389.
  • B. Lemonnier, Deviation des ensembless et groupes Abeliens Totalement Or- donnes, Bull. Sci. Math., 96 (1972) 289–303.
  • C. Lomp, Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions, J. Algebra Appl., 4(1) (2005), 77–97.
  • J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley- Interscience, New York, 1987.
  • A. C¸ . ¨Ozcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., (3) (2006), 533–545.
  • P. F. Smith, Radical submodules and uniform dimension of modules, Turkish J. Math., 28(3) (2004), 255–270.
  • P. F. Smith and A. R. Woodward, Krull dimension of bimodules, J. Algebra, (1) (2007), 405–412.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, Philadelphia, 1991. M. R. Vedadi
  • Department of Mathematical Sciences Isfahan University of Technology Isfahan, 84156-83111, Iran e-mail: mrvedadi@cc.iut.ac.ir
There are 17 citations in total.

Details

Other ID JA46RN52PU
Journal Section Articles
Authors

M. R. Vedadi This is me

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 7 Issue: 7

Cite

APA Vedadi, M. R. (2010). L2-PRIME AND DIMENSIONAL MODULES. International Electronic Journal of Algebra, 7(7), 47-58.
AMA Vedadi MR. L2-PRIME AND DIMENSIONAL MODULES. IEJA. June 2010;7(7):47-58.
Chicago Vedadi, M. R. “L2-PRIME AND DIMENSIONAL MODULES”. International Electronic Journal of Algebra 7, no. 7 (June 2010): 47-58.
EndNote Vedadi MR (June 1, 2010) L2-PRIME AND DIMENSIONAL MODULES. International Electronic Journal of Algebra 7 7 47–58.
IEEE M. R. Vedadi, “L2-PRIME AND DIMENSIONAL MODULES”, IEJA, vol. 7, no. 7, pp. 47–58, 2010.
ISNAD Vedadi, M. R. “L2-PRIME AND DIMENSIONAL MODULES”. International Electronic Journal of Algebra 7/7 (June 2010), 47-58.
JAMA Vedadi MR. L2-PRIME AND DIMENSIONAL MODULES. IEJA. 2010;7:47–58.
MLA Vedadi, M. R. “L2-PRIME AND DIMENSIONAL MODULES”. International Electronic Journal of Algebra, vol. 7, no. 7, 2010, pp. 47-58.
Vancouver Vedadi MR. L2-PRIME AND DIMENSIONAL MODULES. IEJA. 2010;7(7):47-58.