BibTex RIS Cite

(n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES

Year 2009, Volume: 6 Issue: 6, 119 - 133, 01.12.2009

Abstract

This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short)(for integers n ≥ 1 and m ≥ 0). We are mainly interested in studying syzygies of these modules. As consequences, we show that a module M has Gorenstein projective dimension at most m if and only if M ⊕ G is (1, m)-SG-projective for some Gorenstein projective module G. And, over rings of finite left finitistic flat dimension, that a module of finite Gorenstein projective dimension has finite projective dimension if and only if it has finite flat dimension.

References

  • M. Auslander, Anneaux de Gorenstein et torsion en alg`ebre commutative, Secr´etariat math´ematique, Paris, 1967, S´eminaire d’alg`ebre commutative dirig´e par Pierre Samuel, 1966/67. Texte r´edig´e, d’apr`es des expos´es de Mau- rice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro,
  • Ecole Normale Superieure de Jeunes Filles. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. 1969.
  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445.
  • D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl., 8 (2009), 219–227.
  • D. Bennis and N. Mahdou, Global Gorenstein Dimensions. Accepted for pub- lication in Proc. Amer. Math. Soc., Available from arXiv:0611358v4.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions of polynomial rings and of direct products of rings, Accepted for publication in Houston J. Math. Available from arXiv:0712.0126v2.
  • L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., Springer- Verlag, Berlin, 2000.
  • E. E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter, Berlin-New York, 2000.
  • E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633.
  • E. E. Enochs and O. M. G. Jenda, On Gorenstein injective modules, Comm. Algebra, 21 (1993), 3489–3501.
  • E. Enochs, O. M. G. Jenda and J. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc., 348 (1996), 3223–3234.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193.
  • G. Zhao and Z. Huang, n-Strongly Gorenstein Projective, Injective and Flat Modules, Available from arXiv:0904.3045v1.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Driss Bennis
  • Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202,
  • University S. M. Ben Abdellah, Fez, Morocco e-mail: driss bennis@hotmail.com
Year 2009, Volume: 6 Issue: 6, 119 - 133, 01.12.2009

Abstract

References

  • M. Auslander, Anneaux de Gorenstein et torsion en alg`ebre commutative, Secr´etariat math´ematique, Paris, 1967, S´eminaire d’alg`ebre commutative dirig´e par Pierre Samuel, 1966/67. Texte r´edig´e, d’apr`es des expos´es de Mau- rice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro,
  • Ecole Normale Superieure de Jeunes Filles. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. 1969.
  • D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210 (2007), 437–445.
  • D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl., 8 (2009), 219–227.
  • D. Bennis and N. Mahdou, Global Gorenstein Dimensions. Accepted for pub- lication in Proc. Amer. Math. Soc., Available from arXiv:0611358v4.
  • D. Bennis and N. Mahdou, Global Gorenstein dimensions of polynomial rings and of direct products of rings, Accepted for publication in Houston J. Math. Available from arXiv:0712.0126v2.
  • L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., Springer- Verlag, Berlin, 2000.
  • E. E. Enochs and O. M. G. Jenda, Relative homological algebra, Walter de Gruyter, Berlin-New York, 2000.
  • E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633.
  • E. E. Enochs and O. M. G. Jenda, On Gorenstein injective modules, Comm. Algebra, 21 (1993), 3489–3501.
  • E. Enochs, O. M. G. Jenda and J. Xu, Foxby duality and Gorenstein injective and projective modules, Trans. Amer. Math. Soc., 348 (1996), 3223–3234.
  • H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra, 189 (2004), 167–193.
  • G. Zhao and Z. Huang, n-Strongly Gorenstein Projective, Injective and Flat Modules, Available from arXiv:0904.3045v1.
  • J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979. Driss Bennis
  • Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202,
  • University S. M. Ben Abdellah, Fez, Morocco e-mail: driss bennis@hotmail.com
There are 16 citations in total.

Details

Other ID JA25MG38ZE
Journal Section Articles
Authors

Driss Bennis This is me

Publication Date December 1, 2009
Published in Issue Year 2009 Volume: 6 Issue: 6

Cite

APA Bennis, D. (2009). (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. International Electronic Journal of Algebra, 6(6), 119-133.
AMA Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA. December 2009;6(6):119-133.
Chicago Bennis, Driss. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra 6, no. 6 (December 2009): 119-33.
EndNote Bennis D (December 1, 2009) (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. International Electronic Journal of Algebra 6 6 119–133.
IEEE D. Bennis, “(n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES”, IEJA, vol. 6, no. 6, pp. 119–133, 2009.
ISNAD Bennis, Driss. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra 6/6 (December 2009), 119-133.
JAMA Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA. 2009;6:119–133.
MLA Bennis, Driss. “(n, M)-STRONGLY GORENSTEIN PROJECTIVE MODULES”. International Electronic Journal of Algebra, vol. 6, no. 6, 2009, pp. 119-33.
Vancouver Bennis D. (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES. IEJA. 2009;6(6):119-33.