BibTex RIS Cite

SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS

Year 2009, Volume: 5 Issue: 5, 17 - 26, 01.06.2009

Abstract

Thuyet and Wisbauer considered the extending property for the class of (essentially) finitely generated submodules. A module M is called ef-extending if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M. A ring R is called right ef-extending if RR is an ef-extending module. We show that a ring R is QF if and only if R is a left Noetherian, right GP-injective and right efextending ring. Moreover, we prove that R is right PF if and only if R is a right cogenerator, right ef-extending and I-finite.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York, 1974.
  • J. Chen and N. Ding, On general principally injective rings, Comm. Algebra, (5)(1999), 2097 - 2116.
  • J. L. Chen and W. X. Li, On artiness of right CF rings, Comm. Algebra, (11) (2004), 4485 - 4494.
  • J. Chen, L. Shen and Y. Zhou, Characterization of QF rings, Comm. Algebra, (2007), 281-288.
  • N. Chien and L. V. Thuyet, On ef-extending modules, Southeast Asian Bull. Math., 26 (2003), 909-916.
  • N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman, 1996.
  • C. Faith, Algebra II: Ring Theory, Springer-Verlag, Berlin, (1976).
  • K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
  • J. L. G´omez Pardo and P. A. Guil Asensio, Rings with finite essential socle, Proc. Amer. Math. Soc., 125 (1997), 971-977.
  • A. Harmanci and P. F. Smith, Finite direct sums of CS-Modules, Houston J. Math., 19(4)( 1995), 523-532.
  • F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer Graduate Text, S. H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press, 2003.
  • W. K. Nicholson and M. F. Yousif, CS rings and Nakayama permutations, Comm. Algebra, 25(1997), 3787-3795.
  • T. C. Quynh and L. V. Thuyet, On rings with ACC on annihilators and having essential socles, Proc. Int. Math. and Appl. (ICMA, Bangkok 2005), Contri- bution in Math. and Appl., 227-234, 2006.
  • T. C. Quynh and L. V. Thuyet, Some properties of ef-extending rings, to appear in Math. J. Okayama Univ. L. V. Thuyet and T. C. Quynh, On general injective rings with chain condi- tions, to appear in Algebra Coll. L. V. Thuyet and R. Wisbauer, Extending property for finitely generated sub- modules, Vietnam J. Math., 25 (1997), 65 - 73.
  • R. Wisbauer, Foundations of Module and Ring Theory; Gordon and Breach, Reading, 1991.
  • M. F. Yousif and Y. Zhou, Pseudo-Frobenius rings: characterizations and ques- tions, Comm. Algebra, 31(9)(2003), 4473 - 4484.
  • Y. Zhou, Rings in which certain right ideals are direct summands of annihila- tors, J. Aust. Math. Soc., 73 (2002), 335 - 346. Truong Cong Quynh
  • Department of Mathematics Danang University Ton Duc Thang DaNang city, Vietnam e-mails: tcquynh@dce.udn.vn matht2q2004@hotmail.com
Year 2009, Volume: 5 Issue: 5, 17 - 26, 01.06.2009

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York, 1974.
  • J. Chen and N. Ding, On general principally injective rings, Comm. Algebra, (5)(1999), 2097 - 2116.
  • J. L. Chen and W. X. Li, On artiness of right CF rings, Comm. Algebra, (11) (2004), 4485 - 4494.
  • J. Chen, L. Shen and Y. Zhou, Characterization of QF rings, Comm. Algebra, (2007), 281-288.
  • N. Chien and L. V. Thuyet, On ef-extending modules, Southeast Asian Bull. Math., 26 (2003), 909-916.
  • N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman, 1996.
  • C. Faith, Algebra II: Ring Theory, Springer-Verlag, Berlin, (1976).
  • K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
  • J. L. G´omez Pardo and P. A. Guil Asensio, Rings with finite essential socle, Proc. Amer. Math. Soc., 125 (1997), 971-977.
  • A. Harmanci and P. F. Smith, Finite direct sums of CS-Modules, Houston J. Math., 19(4)( 1995), 523-532.
  • F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer Graduate Text, S. H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Univ. Press, 2003.
  • W. K. Nicholson and M. F. Yousif, CS rings and Nakayama permutations, Comm. Algebra, 25(1997), 3787-3795.
  • T. C. Quynh and L. V. Thuyet, On rings with ACC on annihilators and having essential socles, Proc. Int. Math. and Appl. (ICMA, Bangkok 2005), Contri- bution in Math. and Appl., 227-234, 2006.
  • T. C. Quynh and L. V. Thuyet, Some properties of ef-extending rings, to appear in Math. J. Okayama Univ. L. V. Thuyet and T. C. Quynh, On general injective rings with chain condi- tions, to appear in Algebra Coll. L. V. Thuyet and R. Wisbauer, Extending property for finitely generated sub- modules, Vietnam J. Math., 25 (1997), 65 - 73.
  • R. Wisbauer, Foundations of Module and Ring Theory; Gordon and Breach, Reading, 1991.
  • M. F. Yousif and Y. Zhou, Pseudo-Frobenius rings: characterizations and ques- tions, Comm. Algebra, 31(9)(2003), 4473 - 4484.
  • Y. Zhou, Rings in which certain right ideals are direct summands of annihila- tors, J. Aust. Math. Soc., 73 (2002), 335 - 346. Truong Cong Quynh
  • Department of Mathematics Danang University Ton Duc Thang DaNang city, Vietnam e-mails: tcquynh@dce.udn.vn matht2q2004@hotmail.com
There are 20 citations in total.

Details

Other ID JA23JE95KZ
Journal Section Articles
Authors

Truong Cong Quynh This is me

Publication Date June 1, 2009
Published in Issue Year 2009 Volume: 5 Issue: 5

Cite

APA Quynh, T. C. (2009). SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS. International Electronic Journal of Algebra, 5(5), 17-26.
AMA Quynh TC. SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS. IEJA. June 2009;5(5):17-26.
Chicago Quynh, Truong Cong. “SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS”. International Electronic Journal of Algebra 5, no. 5 (June 2009): 17-26.
EndNote Quynh TC (June 1, 2009) SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS. International Electronic Journal of Algebra 5 5 17–26.
IEEE T. C. Quynh, “SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS”, IEJA, vol. 5, no. 5, pp. 17–26, 2009.
ISNAD Quynh, Truong Cong. “SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS”. International Electronic Journal of Algebra 5/5 (June 2009), 17-26.
JAMA Quynh TC. SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS. IEJA. 2009;5:17–26.
MLA Quynh, Truong Cong. “SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS”. International Electronic Journal of Algebra, vol. 5, no. 5, 2009, pp. 17-26.
Vancouver Quynh TC. SOME CHARACTERIZATIONS OF EF-EXTENDING RINGS. IEJA. 2009;5(5):17-26.