BibTex RIS Cite

GENERALIZED COFINITELY SEMIPERFECT MODULES

Year 2009, Volume: 5 Issue: 5, 58 - 69, 01.06.2009

Abstract

In the present paper, we define generalized (amply) cofinitely supplemented modules, and generalized ⊕-cofinitely supplemented modules are defined as a generalization of (amply) cofinitely supplemented modules and ⊕-cofinitely supplemented modules, respectively, and show, among others, the following results:
(1) The class of generalized cofinitely supplemented modules is closed under taking homomorphic images, generalized covers and arbitrary direct sums.
(2) Any finite direct sum of generalized ⊕-cofinitely supplemented modules is a generalized ⊕-cofinitely supplemented module.
(3) M is a generalized cofinitely semiperfect module if and only if M is a generalized cofinitely supplemented -module by supplements which have generalized projective covers.

References

  • R. Alizade, G. Bilhan and P.F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (2001), 2389-2405.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York 1992.
  • G. Azumaya, Some characterizations of semiperfect rings and modules, in Ring Theory, edited by S.K. Jain and S. T. Rizvi, Proc. Biennial Ohio-Denison Conf., May 1992, World Scientific Publ., Singapore, 1993, 28-40.
  • E. B¨uy¨uka¸sık and C. Lomp, On a recent generalization of semiperfect rings, to appear in Bull. Aust. Math. Soc., 78(2) (2008), 317-325.
  • H. C¸ alı¸sıcı and A. Pancar, Cofinitely semiperfect Modules, Sib. Math. J., 46(2) (2005), 359-363.
  • F. Kasch, Modules and Rings, Academic Press, London 1982.
  • M. T. Ko¸san, ⊕-Cofinitely supplemented modules, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 21-32.
  • A. Leghwel, T. Ko¸san, N. Agayev and A. Harmancı, Duo modules and duo rings, Far East J. Math., 20(3) (2006), 341-346.
  • S.H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S.K. Jain and S.T. Rizvi), World Sci. (Singapore, 1993), pp.302-313.
  • P.F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. Sci. and Eng., 25 (2000), 69-79.
  • Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math., (6) (2006), 1589-1601.
  • X. Wue, Characterizations of semiperfect and perfect rings, Publications Matem`atiques, 40 (1996), 115-125.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991. M. Tamer Ko¸san
  • Department of Mathematics, Faculty of Science, Gebze Institute of Technology C¸ ayırova Campus 41400 Gebze-Kocaeli, Turkey email: mtkosan@gyte.edu.tr
Year 2009, Volume: 5 Issue: 5, 58 - 69, 01.06.2009

Abstract

References

  • R. Alizade, G. Bilhan and P.F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra, 29 (2001), 2389-2405.
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer- Verlag, New York 1992.
  • G. Azumaya, Some characterizations of semiperfect rings and modules, in Ring Theory, edited by S.K. Jain and S. T. Rizvi, Proc. Biennial Ohio-Denison Conf., May 1992, World Scientific Publ., Singapore, 1993, 28-40.
  • E. B¨uy¨uka¸sık and C. Lomp, On a recent generalization of semiperfect rings, to appear in Bull. Aust. Math. Soc., 78(2) (2008), 317-325.
  • H. C¸ alı¸sıcı and A. Pancar, Cofinitely semiperfect Modules, Sib. Math. J., 46(2) (2005), 359-363.
  • F. Kasch, Modules and Rings, Academic Press, London 1982.
  • M. T. Ko¸san, ⊕-Cofinitely supplemented modules, Commun. Fac. Sci. Univ. Ank. Series A1, 53(1)(2004), 21-32.
  • A. Leghwel, T. Ko¸san, N. Agayev and A. Harmancı, Duo modules and duo rings, Far East J. Math., 20(3) (2006), 341-346.
  • S.H. Mohammed and B. J. M¨uller, Continous and Discrete Modules, London Math. Soc., LN 147, Cambridge Univ. Press, 1990.
  • P.F. Smith, Modules for which every submodule has a unique closure, in Ring Theory (Editors, S.K. Jain and S.T. Rizvi), World Sci. (Singapore, 1993), pp.302-313.
  • P.F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. Sci. and Eng., 25 (2000), 69-79.
  • Y. Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math., (6) (2006), 1589-1601.
  • X. Wue, Characterizations of semiperfect and perfect rings, Publications Matem`atiques, 40 (1996), 115-125.
  • R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991. M. Tamer Ko¸san
  • Department of Mathematics, Faculty of Science, Gebze Institute of Technology C¸ ayırova Campus 41400 Gebze-Kocaeli, Turkey email: mtkosan@gyte.edu.tr
There are 15 citations in total.

Details

Other ID JA96CV98EN
Journal Section Articles
Authors

M. Tamer Koşan This is me

Publication Date June 1, 2009
Published in Issue Year 2009 Volume: 5 Issue: 5

Cite

APA Koşan, M. T. (2009). GENERALIZED COFINITELY SEMIPERFECT MODULES. International Electronic Journal of Algebra, 5(5), 58-69.
AMA Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. June 2009;5(5):58-69.
Chicago Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra 5, no. 5 (June 2009): 58-69.
EndNote Koşan MT (June 1, 2009) GENERALIZED COFINITELY SEMIPERFECT MODULES. International Electronic Journal of Algebra 5 5 58–69.
IEEE M. T. Koşan, “GENERALIZED COFINITELY SEMIPERFECT MODULES”, IEJA, vol. 5, no. 5, pp. 58–69, 2009.
ISNAD Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra 5/5 (June 2009), 58-69.
JAMA Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. 2009;5:58–69.
MLA Koşan, M. Tamer. “GENERALIZED COFINITELY SEMIPERFECT MODULES”. International Electronic Journal of Algebra, vol. 5, no. 5, 2009, pp. 58-69.
Vancouver Koşan MT. GENERALIZED COFINITELY SEMIPERFECT MODULES. IEJA. 2009;5(5):58-69.