All rings considered are commutative with 1 and all subrings are unital. If R ⊆ T are rings such that T is a finitely generated R-module, R is not a total quotient ring and (R : T) = 0, then there exists a denumerable chain of R-subalgebras of T. The rings having only finite chains of subrings are shown to be the same as the recently classified rings having only finitely many subrings.
D. D. Anderson, D. E. Dobbs and B. Mullins, The primitive element theorem for commutative algebras, Houston J. Math., 25 (1999), 603–623. Corrigen- dum, Houston J. Math., 28 (2002), 217–219.
A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Zeit., (1997), 49–65.
E. Curtin, Infinite rings whose subrings are nested, Proc. Roy. Irish Acad. Sect. A, 94 (1994), 59–66.
E. Curtin, Finite rings whose subrings are nested, Proc. Roy. Irish Acad. Sect. A, 94 (1994), 67–75.
D. E. Dobbs, Extensions of integral domains with infinite chains of interme- diate rings, Comm. Algebra, to appear. D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L’Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33 (2005), –3119.
D. E. Dobbs, B. Mullins and M. Picavet-L’Hermitte, The singly generated uni- tal rings with only finitely many unital subrings, Comm. Algebra, 36 (2008), –2653.
D. E. Dobbs, G. Picavet and M. Picavet-L’Hermitte, A characterization of the commutative unital rings with only finitely many unital subrings, J. Algebra Appl., to appear. D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of an integral domain, J. Algebra, 305 (2006), 185–193.
M. S. Gilbert, Extensions of commutative rings with linearly ordered inter- mediate rings, Ph. D. dissertation, University of Tennessee, Knoxville, TN, R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc., 131 (2003), 2337–2346.
G. Picavet and M. Picavet-L’Hermitte, About minimal morphisms, Multi- plicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York (2006), 369–386.
J. Sato, T. Sugatani and K. I. Yoshida, On minimal overrings of a Noetherian domain, Comm. Algebra, 20 (1992), 1735–1746. David E. Dobbs
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, U.S.A. e-mail: dobbs@math.utk.edu
Gabriel Picavet and Martine Picavet-L’Hermitte Laboratoire de Math´ematiques Pures Universit´e Blaise Pascal Aubi`ere Cedex, France e-mails: Gabriel.Picavet@math.univ-bpclermont.fr Martine.Picavet@math.univ-bpclermont.fr
Year 2009,
Volume: 5 Issue: 5, 121 - 134, 01.06.2009
D. D. Anderson, D. E. Dobbs and B. Mullins, The primitive element theorem for commutative algebras, Houston J. Math., 25 (1999), 603–623. Corrigen- dum, Houston J. Math., 28 (2002), 217–219.
A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Zeit., (1997), 49–65.
E. Curtin, Infinite rings whose subrings are nested, Proc. Roy. Irish Acad. Sect. A, 94 (1994), 59–66.
E. Curtin, Finite rings whose subrings are nested, Proc. Roy. Irish Acad. Sect. A, 94 (1994), 67–75.
D. E. Dobbs, Extensions of integral domains with infinite chains of interme- diate rings, Comm. Algebra, to appear. D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L’Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra, 33 (2005), –3119.
D. E. Dobbs, B. Mullins and M. Picavet-L’Hermitte, The singly generated uni- tal rings with only finitely many unital subrings, Comm. Algebra, 36 (2008), –2653.
D. E. Dobbs, G. Picavet and M. Picavet-L’Hermitte, A characterization of the commutative unital rings with only finitely many unital subrings, J. Algebra Appl., to appear. D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of an integral domain, J. Algebra, 305 (2006), 185–193.
M. S. Gilbert, Extensions of commutative rings with linearly ordered inter- mediate rings, Ph. D. dissertation, University of Tennessee, Knoxville, TN, R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc., 131 (2003), 2337–2346.
G. Picavet and M. Picavet-L’Hermitte, About minimal morphisms, Multi- plicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York (2006), 369–386.
J. Sato, T. Sugatani and K. I. Yoshida, On minimal overrings of a Noetherian domain, Comm. Algebra, 20 (1992), 1735–1746. David E. Dobbs
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, U.S.A. e-mail: dobbs@math.utk.edu
Gabriel Picavet and Martine Picavet-L’Hermitte Laboratoire de Math´ematiques Pures Universit´e Blaise Pascal Aubi`ere Cedex, France e-mails: Gabriel.Picavet@math.univ-bpclermont.fr Martine.Picavet@math.univ-bpclermont.fr
Dobbs, D. E., Picavet, G., & Picavet-l’hermitt, M. (2009). ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS. International Electronic Journal of Algebra, 5(5), 121-134.
AMA
Dobbs DE, Picavet G, Picavet-l’hermitt M. ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS. IEJA. June 2009;5(5):121-134.
Chicago
Dobbs, David E., Gabriel Picavet, and Martine Picavet-l’hermitt. “ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS”. International Electronic Journal of Algebra 5, no. 5 (June 2009): 121-34.
EndNote
Dobbs DE, Picavet G, Picavet-l’hermitt M (June 1, 2009) ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS. International Electronic Journal of Algebra 5 5 121–134.
IEEE
D. E. Dobbs, G. Picavet, and M. Picavet-l’hermitt, “ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS”, IEJA, vol. 5, no. 5, pp. 121–134, 2009.
ISNAD
Dobbs, David E. et al. “ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS”. International Electronic Journal of Algebra 5/5 (June 2009), 121-134.
JAMA
Dobbs DE, Picavet G, Picavet-l’hermitt M. ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS. IEJA. 2009;5:121–134.
MLA
Dobbs, David E. et al. “ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS”. International Electronic Journal of Algebra, vol. 5, no. 5, 2009, pp. 121-34.
Vancouver
Dobbs DE, Picavet G, Picavet-l’hermitt M. ON THE MAXIMAL CARDINALITY OF CHAINS OF INTERMEDIATE RINGS. IEJA. 2009;5(5):121-34.