BibTex RIS Cite

REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES

Year 2008, Volume: 4 Issue: 4, 27 - 52, 01.12.2008

Abstract

We present an extremely elementary construction of the simple Lie algebras over C in all of their minuscule representations, using the vertices of various polytopes. The construction itself requires no complicated combinatorics and essentially no Lie theory other than the definition of a Lie algebra; in fact, the Lie algebras themselves appear as by-products of the construction.

References

  • S.C. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math. 182, Birkh¨auser, Boston, 2000.
  • R.W. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005.
  • J.H. Conway and N.J.A. Sloane, The cell structures of certain lattices, in Miscellanea Mathematica (editors P. Hilton, F. Hirzebruch and R. Remmert), Springer-Verlag, (New York, 1991), pp. 71–108.
  • B.N. Cooperstein, A note on the Weyl group of type E7, Europ. J. Combina- torics, 11 (1990), 415–419.
  • H.S.M. Coxeter, Regular Polytopes, Pitman, New York, 1947.
  • P. du Val, On the directrices of a set of points in a plane, Proc. Lond. Math. Soc., (2) 35 (1933), 23–74.
  • R.M. Green, Full heaps and representations of affine Kac–Moody algebras, Int. Electron. J. Algebra, 2 (2007), 138–188.
  • R.M. Green, Full heaps and representations of affine Weyl groups, Int. Elec- tron. J. Algebra, 3 (2008), 1–42.
  • R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
  • J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univer- sity Press, Cambridge, 1990.
  • V.G. Kac, Infinite dimensional Lie algebras (third edition), Cambridge Uni- versity Press, Cambridge, UK, 1990.
  • M. Kashiwara, On crystal bases of the q-analogue of universal enveloping al- gebras, Duke Math. J., 63 (1991), 465–516.
  • L. Manivel, Configurations of lines and models of Lie algebras, J. Algebra, 304 (2006), 457–486.
  • J.R. Stembridge, Minuscule elements of Weyl groups, J. Algebra, 235 (2001), –743.
  • N.J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Adv. Appl. Math., 30 (2003), 385–396.
  • N.J. Wildberger, A combinatorial construction of G2, J. Lie Theory, 13 (2003), –165. Richard M. Green
  • Department of Mathematics University of Colorado Campus Box 395 Boulder, CO 80309-0395 USA e-mail: rmg@euclid.colorado.edu
Year 2008, Volume: 4 Issue: 4, 27 - 52, 01.12.2008

Abstract

References

  • S.C. Billey and V. Lakshmibai, Singular Loci of Schubert Varieties, Progr. Math. 182, Birkh¨auser, Boston, 2000.
  • R.W. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005.
  • J.H. Conway and N.J.A. Sloane, The cell structures of certain lattices, in Miscellanea Mathematica (editors P. Hilton, F. Hirzebruch and R. Remmert), Springer-Verlag, (New York, 1991), pp. 71–108.
  • B.N. Cooperstein, A note on the Weyl group of type E7, Europ. J. Combina- torics, 11 (1990), 415–419.
  • H.S.M. Coxeter, Regular Polytopes, Pitman, New York, 1947.
  • P. du Val, On the directrices of a set of points in a plane, Proc. Lond. Math. Soc., (2) 35 (1933), 23–74.
  • R.M. Green, Full heaps and representations of affine Kac–Moody algebras, Int. Electron. J. Algebra, 2 (2007), 138–188.
  • R.M. Green, Full heaps and representations of affine Weyl groups, Int. Elec- tron. J. Algebra, 3 (2008), 1–42.
  • R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
  • J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univer- sity Press, Cambridge, 1990.
  • V.G. Kac, Infinite dimensional Lie algebras (third edition), Cambridge Uni- versity Press, Cambridge, UK, 1990.
  • M. Kashiwara, On crystal bases of the q-analogue of universal enveloping al- gebras, Duke Math. J., 63 (1991), 465–516.
  • L. Manivel, Configurations of lines and models of Lie algebras, J. Algebra, 304 (2006), 457–486.
  • J.R. Stembridge, Minuscule elements of Weyl groups, J. Algebra, 235 (2001), –743.
  • N.J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Adv. Appl. Math., 30 (2003), 385–396.
  • N.J. Wildberger, A combinatorial construction of G2, J. Lie Theory, 13 (2003), –165. Richard M. Green
  • Department of Mathematics University of Colorado Campus Box 395 Boulder, CO 80309-0395 USA e-mail: rmg@euclid.colorado.edu
There are 17 citations in total.

Details

Other ID JA49NJ77VC
Journal Section Articles
Authors

Richard M. Green This is me

Publication Date December 1, 2008
Published in Issue Year 2008 Volume: 4 Issue: 4

Cite

APA Green, R. M. (2008). REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. International Electronic Journal of Algebra, 4(4), 27-52.
AMA Green RM. REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. IEJA. December 2008;4(4):27-52.
Chicago Green, Richard M. “REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES”. International Electronic Journal of Algebra 4, no. 4 (December 2008): 27-52.
EndNote Green RM (December 1, 2008) REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. International Electronic Journal of Algebra 4 4 27–52.
IEEE R. M. Green, “REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES”, IEJA, vol. 4, no. 4, pp. 27–52, 2008.
ISNAD Green, Richard M. “REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES”. International Electronic Journal of Algebra 4/4 (December 2008), 27-52.
JAMA Green RM. REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. IEJA. 2008;4:27–52.
MLA Green, Richard M. “REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES”. International Electronic Journal of Algebra, vol. 4, no. 4, 2008, pp. 27-52.
Vancouver Green RM. REPRESENTATIONS OF LIE ALGEBRAS ARISING FROM POLYTOPES. IEJA. 2008;4(4):27-52.