One defines an equivalence relation on a commutative ring R by declaring elements r1, r2 ∈ R to be equivalent if and only if annR(r1) = annR(r2). If [r]R denotes the equivalence class of an element r ∈ R, then it is known that |[r]R| = |[r/1]T (R) |, where T(R) denotes the total quotient ring of R. In this paper, we investigate the extent to which a similar equality will hold when T(R) is replaced by Q(R), the complete ring of quotients of R. The results are applied to compare the zero-divisor graph of a reduced commutative ring to that of its complete ring of quotients.
S. Argyros, A decomposition of complete Boolean algebras, Pacific J. Math., 87 (1980), 1-9.
D.F. Anderson, A. Frazier, A. Lauve, and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and Applied Mathe- matics, (editors Daniel D. Anderson and Ira J. Papick), Marcel Dekker (New York, 2001), 220, pp. 61-72.
D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (2003), 221- 241.
D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543-550.
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of com- mutative rings, Internat. J. Commutative Rings, 1 (3) (2002), 93-106.
N.J. Fine, L. Gillman, and J. Lambek, Rings of Quotients of Rings of Func- tions, McGill University Press, Montreal, 1965.
J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
W. Just and M. Weese, Discovering Modern Set Theory, II, American Mathe- matical Society, Providence, 1997.
J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Alge- bra, 315 (2007), 600-611.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30 (2) (2002), 745-750.
T.G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006) 174- 193.
J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York, 1969.
S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30 (7) (2002), 3533-3558.
B. Stenstr¨om, Rings of Quotients, Springer-Verlag, New York, 1975. John D. LaGrange
Department of Mathematics,
The University of Tennessee,
Knoxville, TN 37996, USA
e-mail: lagrange@math.utk.edu
Year 2008,
Volume: 4 Issue: 4, 63 - 82, 01.12.2008
S. Argyros, A decomposition of complete Boolean algebras, Pacific J. Math., 87 (1980), 1-9.
D.F. Anderson, A. Frazier, A. Lauve, and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes in Pure and Applied Mathe- matics, (editors Daniel D. Anderson and Ira J. Papick), Marcel Dekker (New York, 2001), 220, pp. 61-72.
D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (2003), 221- 241.
D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543-550.
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of com- mutative rings, Internat. J. Commutative Rings, 1 (3) (2002), 93-106.
N.J. Fine, L. Gillman, and J. Lambek, Rings of Quotients of Rings of Func- tions, McGill University Press, Montreal, 1965.
J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
W. Just and M. Weese, Discovering Modern Set Theory, II, American Mathe- matical Society, Providence, 1997.
J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Alge- bra, 315 (2007), 600-611.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30 (2) (2002), 745-750.
T.G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006) 174- 193.
J.D. Monk, Introduction to Set Theory, McGraw-Hill, New York, 1969.
S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30 (7) (2002), 3533-3558.
B. Stenstr¨om, Rings of Quotients, Springer-Verlag, New York, 1975. John D. LaGrange
Lagrange, J. D. (2008). THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING. International Electronic Journal of Algebra, 4(4), 63-82.
AMA
Lagrange JD. THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING. IEJA. December 2008;4(4):63-82.
Chicago
Lagrange, John D. “THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING”. International Electronic Journal of Algebra 4, no. 4 (December 2008): 63-82.
EndNote
Lagrange JD (December 1, 2008) THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING. International Electronic Journal of Algebra 4 4 63–82.
IEEE
J. D. Lagrange, “THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING”, IEJA, vol. 4, no. 4, pp. 63–82, 2008.
ISNAD
Lagrange, John D. “THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING”. International Electronic Journal of Algebra 4/4 (December 2008), 63-82.
JAMA
Lagrange JD. THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING. IEJA. 2008;4:63–82.
MLA
Lagrange, John D. “THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING”. International Electronic Journal of Algebra, vol. 4, no. 4, 2008, pp. 63-82.
Vancouver
Lagrange JD. THE CARDINALITY OF AN ANNIHILATOR CLASS IN A VON NEUMANN REGULAR RING. IEJA. 2008;4(4):63-82.