BibTex RIS Cite

COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An

Year 2008, Volume: 4 Issue: 4, 149 - 158, 01.12.2008

Abstract

The purpose of this paper is to give an explicit formula for the number of non-isomorphic cluster-tilted algebras of type An, by counting the mutation class of any quiver with underlying graph An. It will also follow that if T and T0 are cluster-tilting objects in a cluster category C, then EndC(T) is isomorphic to EndC(T0) if and only if T = τiT0.

Year 2008, Volume: 4 Issue: 4, 149 - 158, 01.12.2008

Abstract

There are 0 citations in total.

Details

Other ID JA76JZ72BD
Journal Section Articles
Authors

Hermund André Torkildsen This is me

Publication Date December 1, 2008
Published in Issue Year 2008 Volume: 4 Issue: 4

Cite

APA Torkildsen, H. A. (2008). COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An. International Electronic Journal of Algebra, 4(4), 149-158.
AMA Torkildsen HA. COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An. IEJA. December 2008;4(4):149-158.
Chicago Torkildsen, Hermund André. “COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An”. International Electronic Journal of Algebra 4, no. 4 (December 2008): 149-58.
EndNote Torkildsen HA (December 1, 2008) COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An. International Electronic Journal of Algebra 4 4 149–158.
IEEE H. A. Torkildsen, “COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An”, IEJA, vol. 4, no. 4, pp. 149–158, 2008.
ISNAD Torkildsen, Hermund André. “COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An”. International Electronic Journal of Algebra 4/4 (December 2008), 149-158.
JAMA Torkildsen HA. COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An. IEJA. 2008;4:149–158.
MLA Torkildsen, Hermund André. “COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An”. International Electronic Journal of Algebra, vol. 4, no. 4, 2008, pp. 149-58.
Vancouver Torkildsen HA. COUNTING CLUSTER-TILTED ALGEBRAS OF TYPE An. IEJA. 2008;4(4):149-58.