BibTex RIS Cite

SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS

Year 2007, Volume: 2 Issue: 2, 54 - 70, 01.12.2007

Abstract

We develop algorithms for determining properties of finite abelian groups related to the notions of extending and lifting groups. Thus, we give efficient methods, on one hand to check the properties of being direct summand, essential, superfluous, coessential, complement (closed), supplement (coclosed) subgroup, and on the other hand to determine all subgroups with the mentioned properties of a given finite abelian group.

References

  • G. C˘alug˘areanu, S. Breaz, C. Modoi, C. Pelea and D. V˘alcan, Exercises in Abelian group theory, Kluwer Texts in the Mathematical Sciences, 25, Dor- drecht, Kluwer, 2003.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics, Birkh¨auser, Basel, S. Crivei, G. Olteanu and S¸. S¸uteu Sz¨oll˝osi, ELISA. A collec- tion of GAP algorithms related to extending and lifting abelian groups. (http://www.gap-system.org/Packages/undep.html) (http://math.ubbcluj.ro/~crivei/GAP_project). N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series, 313, Longman ScientiŞc and Technical, 1994.
  • A. Harmancı, D. Keskin and P.F. Smith, On ⊕-supplemented modules, Acta Math. Hungar., 83 (1999), 161–169.
  • D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hun- gar., 91 (2001), 253–261.
  • E. Mermut, Homological approach to complements and supplements, Ph.D. thesis, Dokuz Eyl¨ul University, Izmir, 2004.
  • S.H. Mohamed and B.J. M¨uller, Continuous and discrete modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, P.F. Smith and A. Tercan, Generalizations of CS modules, Comm. Algebra, (1993), 1809–1847.
  • The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7 ; 2006, (http://www.gap-system.org).
  • Septimiu Crivei * and S¸tefan S¸uteu Sz¨oll˝osi ** Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, Str. M. Kog˘alniceanu 1, 400084 Cluj-Napoca, Romania
  • E-mails: * crivei@math.ubbcluj.ro, ** szollosi@gmail.com
Year 2007, Volume: 2 Issue: 2, 54 - 70, 01.12.2007

Abstract

References

  • G. C˘alug˘areanu, S. Breaz, C. Modoi, C. Pelea and D. V˘alcan, Exercises in Abelian group theory, Kluwer Texts in the Mathematical Sciences, 25, Dor- drecht, Kluwer, 2003.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics, Birkh¨auser, Basel, S. Crivei, G. Olteanu and S¸. S¸uteu Sz¨oll˝osi, ELISA. A collec- tion of GAP algorithms related to extending and lifting abelian groups. (http://www.gap-system.org/Packages/undep.html) (http://math.ubbcluj.ro/~crivei/GAP_project). N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics Series, 313, Longman ScientiŞc and Technical, 1994.
  • A. Harmancı, D. Keskin and P.F. Smith, On ⊕-supplemented modules, Acta Math. Hungar., 83 (1999), 161–169.
  • D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hun- gar., 91 (2001), 253–261.
  • E. Mermut, Homological approach to complements and supplements, Ph.D. thesis, Dokuz Eyl¨ul University, Izmir, 2004.
  • S.H. Mohamed and B.J. M¨uller, Continuous and discrete modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, P.F. Smith and A. Tercan, Generalizations of CS modules, Comm. Algebra, (1993), 1809–1847.
  • The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7 ; 2006, (http://www.gap-system.org).
  • Septimiu Crivei * and S¸tefan S¸uteu Sz¨oll˝osi ** Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, Str. M. Kog˘alniceanu 1, 400084 Cluj-Napoca, Romania
  • E-mails: * crivei@math.ubbcluj.ro, ** szollosi@gmail.com
There are 9 citations in total.

Details

Other ID JA47GR93UZ
Journal Section Articles
Authors

Septimiu Crivei This is me

Ştefan Şuteu Szöllosi This is me

Publication Date December 1, 2007
Published in Issue Year 2007 Volume: 2 Issue: 2

Cite

APA Crivei, S., & Szöllosi, Ş. Ş. (2007). SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS. International Electronic Journal of Algebra, 2(2), 54-70.
AMA Crivei S, Szöllosi ŞŞ. SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS. IEJA. December 2007;2(2):54-70.
Chicago Crivei, Septimiu, and Ştefan Şuteu Szöllosi. “SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS”. International Electronic Journal of Algebra 2, no. 2 (December 2007): 54-70.
EndNote Crivei S, Szöllosi ŞŞ (December 1, 2007) SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS. International Electronic Journal of Algebra 2 2 54–70.
IEEE S. Crivei and Ş. Ş. Szöllosi, “SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS”, IEJA, vol. 2, no. 2, pp. 54–70, 2007.
ISNAD Crivei, Septimiu - Szöllosi, Ştefan Şuteu. “SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS”. International Electronic Journal of Algebra 2/2 (December 2007), 54-70.
JAMA Crivei S, Szöllosi ŞŞ. SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS. IEJA. 2007;2:54–70.
MLA Crivei, Septimiu and Ştefan Şuteu Szöllosi. “SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS”. International Electronic Journal of Algebra, vol. 2, no. 2, 2007, pp. 54-70.
Vancouver Crivei S, Szöllosi ŞŞ. SUBGROUP LATTICE ALGORITHMS RELATED TO EXTENDING AND LIFTING ABELIAN GROUPS. IEJA. 2007;2(2):54-70.