BibTex RIS Cite

IDEALS AND OVERRINGS OF DIVIDED DOMAINS

Year 2010, Volume: 8 Issue: 8, 80 - 113, 01.12.2010

Abstract

New properties of divided domains R are established by looking at multiplicatively closed subsets associated to ring morphisms. Let I be an ideal of R. We exhibit primary ideals, like I√I and In if I is primary. We show that Ass(I) = V(I) ∩ Spec(RMax(Ass(I))). Moreover, the image of the maximal spectrum of (I : I) is contained in Ass(I). We show that certain intersections of ideals are primary ideals. Goldman prime ideals are prime gideals. The characterization of maximal flat epimorphic subextensions gives as a result that R is a valuation subring of Pr¨ufer hulls. We characterize Fontana-Houston divided Ω-domains, divided APVDs and divided PPC-domains.

References

  • A. Badawi, On divided commutative rings, Comm. Algebra, 27(3) (1999), 1465–1474.
  • A. Badawi and D. E. Dobbs, Some examples of locally divided rings, 73–83,
  • Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  • A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost
  • pseudo-valuation domains, and conducive domains, Comm. Algebra, 30(4) (2002), 1591–1606.
  • N. Bourbaki, Alg`ebre Commutative, Chapitre 4, Hermann, Paris, 1967.
  • J. Coykendall and D. Dobbs, Fragmented ideals have infinite Krull dimension,
  • Rend. Circ. Mat. Palermo, 50(2) (2001), 377-388.
  • G. H. Chang, H. Nam and J. Park, Strongly primary ideals, 378–386, Lecture
  • Notes Pure Appl. Math., 241, Chapman & Hall, Boca Raton Fl, 2005.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math., 67 (1976), 353–
  • D. E. Dobbs, On going-down for simple overrings, III, Proc. Amer. Math.
  • Soc., 54 (1976), 35–38.
  • D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains,
  • Houston J. Math., 4 (1978), 551–567.
  • D. E. Dobbs, Ahmes expansions of formal Laurent series and a class of NonArchimedean domains, J. Algebra, 103 (1986), 193–201.
  • D. E. Dobbs, Fragmented integral domains, Portugaliae Math., 45 (1985– 1986), 463–473.
  • D. E. Dobbs, On flat divided prime ideals, 305–315, Factorization in integral domains, Lecture Notes Pure Appl. Math., 189, Dekker, New York, 1997.
  • D. E. Dobbs, Recent progress on going-down I, Non-Noetherian commutative ring theory, 139–168, Kluwer Acad Publ., Dordrecht, 2000.
  • D. E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra, 86 (1984), 494–510.
  • D. E. Dobbs, R. Fedder and M. Fontana, G-domains and spectral spaces, J. Pure Appl. Algebra, 51 (1988), 89–110.
  • D. E. Dobbs and G. Picavet, Straight rings, Comm. Algebra, 37(3) (2009), 757–793.
  • D. E. Dobbs and G. Picavet, Straight rings, II, Commutative Algebra and its Applications, 183–205, de Gruyter, Berlin, New York, 2009.
  • C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commuta- tive rings, Comm. Algebra, 19(7) (1991), 1867–1892.
  • C. Faith, Rings with few zero divisors are those with semilocal Kasch quotient rings, Houston J. Math., 22(4) (1996), 687–690.
  • M. Fontana, Kaplansky ideal transform: A survey, 271–306, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
  • M. Fontana and E. Houston, On integral domains whose overrings are Ka- plansky ideal transforms, J. Pure Appl. Algebra, 163 (2001), 173–192.
  • M. Fontana, E. Houston and T. G. Lucas, Toward a classification of prime ideals in Pr¨ufer domains, Forum Math., 19 (2007), 971–1004.
  • M. Fontana, J. A. Huckaba and I. J. Papick, Pr¨ufer Domains, Dekker, New York, 1997.
  • M. Fontana, J. A. Huckaba, I. J. Papick and M. Roitman, Pr¨ufer domains and endomorphism rings of their ideals, J. Algebra, 157 (1993), 489–516.
  • M. Fontana and N. Popescu, Universal property of the Kaplansky ideal trans- form and affineness of open subsets, J. Pure Appl. Algebra, 173 (2002), 121–
  • R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
  • L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions, primal ideals, Trans. Amer. Math. Soc., 357 (2004), 2771–2798.
  • L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient field, 121–145, Lect. Notes Pure Appl. Math., 249, Chapman & Hall, Boca Raton, FL, 2006. 215–239.
  • L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys and Monographs, 84, American Math. Society, 2001.
  • R. Gilmer, Multiplicative Ideal Theory, Queen’s Papers in Pure and Appl. Math., 90, 1992.
  • R. Gilmer and W. Heinzer, Imbeddability of a commutative ring in a finite dimensional ring, Manuscripta Math., 84 (1994), 401–414.
  • A. Grothendieck and J. Dieudonn´e, El´ements de G´eom´etrie Alg´ebrique, Springer Verlag, Berlin, 1971.
  • J. A. Huckaba and I. J. Papick, When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), 67–85.
  • M. Kanemitsu, R. Matsuda, N. Onoda and T. Sugatani, Idealizers, complete integral closures and almost pseudo-valuation domains, Kyungpook Math. J., 44 (2004), 557–563.
  • I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  • M. Knebusch and D. Zhang, Manis valuations and Pr¨ufer extensions, Lecture Notes in Mathematics, Vol. 1791, Springer Verlag, Berlin, 2002.
  • R. A Kuntz, Associated prime divisors in the sense of Krull, Canad. J. Math., 24 (1972), 808–818.
  • D. Lazard, Autour de la platitude, Bull. Soc. Math. France, 97 (1969), 81–128.
  • K. Morita, Flat modules, injective modules and quotient rings, Math. Z., 120 (1971), 25–40.
  • A. Okabe, On conductor overrings of an integral domain, Tsukuba J. Math., 8 (1984), 69–75.
  • A. Okabe, Some ideal-theoretical characterizations of divided domains, Hous- ton J. Math., 12(4) (1986), 563–577.
  • I. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37.
  • G. Picavet, Sur une g´en´eralisation de la notion de spectre d’anneaux, Ann. Sci. Univ. Clermont, 44 (1970), 81–101.
  • G. Picavet, Sur les anneaux commutatifs dont tout ideal premier est de Gold- man, C. R. Acad. Sci. Paris, Ser. A, 280 (1975), 1719–1721.
  • G. Picavet, Propri´et´es et applications de la notion de contenu, Comm. Alge- bra, 13(10) (1985), 2231–2265.
  • G. Picavet, Puret´e, rigidit´e et morphismes entiers, Trans. Amer. Math. Soc., 323 (1991), 283–313.
  • G. Picavet, Geometric subsets of a spectrum, 387–417, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • G. Picavet, Treed domains, Int. Electron. J. Algebra, 3 (2008), 1–14.
  • R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210–229.
  • S. Singh and P. Manchand, On complete integral closure of G-domains, Indian J. Pure Appl. Math., 20 (1989), 884–886. Gabriel Picavet
  • Laboratoire de Math´ematiques
  • Universit´e Blaise Pascal 63177 Aubiere Cedex
  • e-mail: Gabriel.Picavet@math.univ-bpclermont.fr
Year 2010, Volume: 8 Issue: 8, 80 - 113, 01.12.2010

Abstract

References

  • A. Badawi, On divided commutative rings, Comm. Algebra, 27(3) (1999), 1465–1474.
  • A. Badawi and D. E. Dobbs, Some examples of locally divided rings, 73–83,
  • Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  • A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost
  • pseudo-valuation domains, and conducive domains, Comm. Algebra, 30(4) (2002), 1591–1606.
  • N. Bourbaki, Alg`ebre Commutative, Chapitre 4, Hermann, Paris, 1967.
  • J. Coykendall and D. Dobbs, Fragmented ideals have infinite Krull dimension,
  • Rend. Circ. Mat. Palermo, 50(2) (2001), 377-388.
  • G. H. Chang, H. Nam and J. Park, Strongly primary ideals, 378–386, Lecture
  • Notes Pure Appl. Math., 241, Chapman & Hall, Boca Raton Fl, 2005.
  • D. E. Dobbs, Divided rings and going-down, Pacific J. Math., 67 (1976), 353–
  • D. E. Dobbs, On going-down for simple overrings, III, Proc. Amer. Math.
  • Soc., 54 (1976), 35–38.
  • D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains,
  • Houston J. Math., 4 (1978), 551–567.
  • D. E. Dobbs, Ahmes expansions of formal Laurent series and a class of NonArchimedean domains, J. Algebra, 103 (1986), 193–201.
  • D. E. Dobbs, Fragmented integral domains, Portugaliae Math., 45 (1985– 1986), 463–473.
  • D. E. Dobbs, On flat divided prime ideals, 305–315, Factorization in integral domains, Lecture Notes Pure Appl. Math., 189, Dekker, New York, 1997.
  • D. E. Dobbs, Recent progress on going-down I, Non-Noetherian commutative ring theory, 139–168, Kluwer Acad Publ., Dordrecht, 2000.
  • D. E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra, 86 (1984), 494–510.
  • D. E. Dobbs, R. Fedder and M. Fontana, G-domains and spectral spaces, J. Pure Appl. Algebra, 51 (1988), 89–110.
  • D. E. Dobbs and G. Picavet, Straight rings, Comm. Algebra, 37(3) (2009), 757–793.
  • D. E. Dobbs and G. Picavet, Straight rings, II, Commutative Algebra and its Applications, 183–205, de Gruyter, Berlin, New York, 2009.
  • C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commuta- tive rings, Comm. Algebra, 19(7) (1991), 1867–1892.
  • C. Faith, Rings with few zero divisors are those with semilocal Kasch quotient rings, Houston J. Math., 22(4) (1996), 687–690.
  • M. Fontana, Kaplansky ideal transform: A survey, 271–306, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
  • M. Fontana and E. Houston, On integral domains whose overrings are Ka- plansky ideal transforms, J. Pure Appl. Algebra, 163 (2001), 173–192.
  • M. Fontana, E. Houston and T. G. Lucas, Toward a classification of prime ideals in Pr¨ufer domains, Forum Math., 19 (2007), 971–1004.
  • M. Fontana, J. A. Huckaba and I. J. Papick, Pr¨ufer Domains, Dekker, New York, 1997.
  • M. Fontana, J. A. Huckaba, I. J. Papick and M. Roitman, Pr¨ufer domains and endomorphism rings of their ideals, J. Algebra, 157 (1993), 489–516.
  • M. Fontana and N. Popescu, Universal property of the Kaplansky ideal trans- form and affineness of open subsets, J. Pure Appl. Algebra, 173 (2002), 121–
  • R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
  • L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions, primal ideals, Trans. Amer. Math. Soc., 357 (2004), 2771–2798.
  • L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient field, 121–145, Lect. Notes Pure Appl. Math., 249, Chapman & Hall, Boca Raton, FL, 2006. 215–239.
  • L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys and Monographs, 84, American Math. Society, 2001.
  • R. Gilmer, Multiplicative Ideal Theory, Queen’s Papers in Pure and Appl. Math., 90, 1992.
  • R. Gilmer and W. Heinzer, Imbeddability of a commutative ring in a finite dimensional ring, Manuscripta Math., 84 (1994), 401–414.
  • A. Grothendieck and J. Dieudonn´e, El´ements de G´eom´etrie Alg´ebrique, Springer Verlag, Berlin, 1971.
  • J. A. Huckaba and I. J. Papick, When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), 67–85.
  • M. Kanemitsu, R. Matsuda, N. Onoda and T. Sugatani, Idealizers, complete integral closures and almost pseudo-valuation domains, Kyungpook Math. J., 44 (2004), 557–563.
  • I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  • M. Knebusch and D. Zhang, Manis valuations and Pr¨ufer extensions, Lecture Notes in Mathematics, Vol. 1791, Springer Verlag, Berlin, 2002.
  • R. A Kuntz, Associated prime divisors in the sense of Krull, Canad. J. Math., 24 (1972), 808–818.
  • D. Lazard, Autour de la platitude, Bull. Soc. Math. France, 97 (1969), 81–128.
  • K. Morita, Flat modules, injective modules and quotient rings, Math. Z., 120 (1971), 25–40.
  • A. Okabe, On conductor overrings of an integral domain, Tsukuba J. Math., 8 (1984), 69–75.
  • A. Okabe, Some ideal-theoretical characterizations of divided domains, Hous- ton J. Math., 12(4) (1986), 563–577.
  • I. Papick, Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37.
  • G. Picavet, Sur une g´en´eralisation de la notion de spectre d’anneaux, Ann. Sci. Univ. Clermont, 44 (1970), 81–101.
  • G. Picavet, Sur les anneaux commutatifs dont tout ideal premier est de Gold- man, C. R. Acad. Sci. Paris, Ser. A, 280 (1975), 1719–1721.
  • G. Picavet, Propri´et´es et applications de la notion de contenu, Comm. Alge- bra, 13(10) (1985), 2231–2265.
  • G. Picavet, Puret´e, rigidit´e et morphismes entiers, Trans. Amer. Math. Soc., 323 (1991), 283–313.
  • G. Picavet, Geometric subsets of a spectrum, 387–417, Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003.
  • G. Picavet, Treed domains, Int. Electron. J. Algebra, 3 (2008), 1–14.
  • R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210–229.
  • S. Singh and P. Manchand, On complete integral closure of G-domains, Indian J. Pure Appl. Math., 20 (1989), 884–886. Gabriel Picavet
  • Laboratoire de Math´ematiques
  • Universit´e Blaise Pascal 63177 Aubiere Cedex
  • e-mail: Gabriel.Picavet@math.univ-bpclermont.fr
There are 59 citations in total.

Details

Other ID JA94GR33RN
Journal Section Articles
Authors

Gabriel Picavet This is me

Publication Date December 1, 2010
Published in Issue Year 2010 Volume: 8 Issue: 8

Cite

APA Picavet, G. (2010). IDEALS AND OVERRINGS OF DIVIDED DOMAINS. International Electronic Journal of Algebra, 8(8), 80-113.
AMA Picavet G. IDEALS AND OVERRINGS OF DIVIDED DOMAINS. IEJA. December 2010;8(8):80-113.
Chicago Picavet, Gabriel. “IDEALS AND OVERRINGS OF DIVIDED DOMAINS”. International Electronic Journal of Algebra 8, no. 8 (December 2010): 80-113.
EndNote Picavet G (December 1, 2010) IDEALS AND OVERRINGS OF DIVIDED DOMAINS. International Electronic Journal of Algebra 8 8 80–113.
IEEE G. Picavet, “IDEALS AND OVERRINGS OF DIVIDED DOMAINS”, IEJA, vol. 8, no. 8, pp. 80–113, 2010.
ISNAD Picavet, Gabriel. “IDEALS AND OVERRINGS OF DIVIDED DOMAINS”. International Electronic Journal of Algebra 8/8 (December 2010), 80-113.
JAMA Picavet G. IDEALS AND OVERRINGS OF DIVIDED DOMAINS. IEJA. 2010;8:80–113.
MLA Picavet, Gabriel. “IDEALS AND OVERRINGS OF DIVIDED DOMAINS”. International Electronic Journal of Algebra, vol. 8, no. 8, 2010, pp. 80-113.
Vancouver Picavet G. IDEALS AND OVERRINGS OF DIVIDED DOMAINS. IEJA. 2010;8(8):80-113.