t. In this note we consider a new concept, so called Σ-zip ring, which
unifies zip rings and weak zip rings. We observe the basic properties of Σ-zip
rings, constructing typical examples. We study the relationship between the
Σ-zip property of a ring R and that of its Ore extensions and skew generalized
power series extensions. As a consequence, we obtain a generalization of several
known results relating to zip rings and weak zip rings.
Lunqun, O., Qiong, Z., & Jinfang, W. (2017). EXTENSIONS OF Σ-ZIP RINGS. International Electronic Journal of Algebra, 21(21), 1-22. https://doi.org/10.24330/ieja.295657
AMA
Lunqun O, Qiong Z, Jinfang W. EXTENSIONS OF Σ-ZIP RINGS. IEJA. January 2017;21(21):1-22. doi:10.24330/ieja.295657
Chicago
Lunqun, Ouyang, Zhou Qiong, and Wu Jinfang. “EXTENSIONS OF Σ-ZIP RINGS”. International Electronic Journal of Algebra 21, no. 21 (January 2017): 1-22. https://doi.org/10.24330/ieja.295657.
EndNote
Lunqun O, Qiong Z, Jinfang W (January 1, 2017) EXTENSIONS OF Σ-ZIP RINGS. International Electronic Journal of Algebra 21 21 1–22.
IEEE
O. Lunqun, Z. Qiong, and W. Jinfang, “EXTENSIONS OF Σ-ZIP RINGS”, IEJA, vol. 21, no. 21, pp. 1–22, 2017, doi: 10.24330/ieja.295657.
ISNAD
Lunqun, Ouyang et al. “EXTENSIONS OF Σ-ZIP RINGS”. International Electronic Journal of Algebra 21/21 (January 2017), 1-22. https://doi.org/10.24330/ieja.295657.
JAMA
Lunqun O, Qiong Z, Jinfang W. EXTENSIONS OF Σ-ZIP RINGS. IEJA. 2017;21:1–22.
MLA
Lunqun, Ouyang et al. “EXTENSIONS OF Σ-ZIP RINGS”. International Electronic Journal of Algebra, vol. 21, no. 21, 2017, pp. 1-22, doi:10.24330/ieja.295657.
Vancouver
Lunqun O, Qiong Z, Jinfang W. EXTENSIONS OF Σ-ZIP RINGS. IEJA. 2017;21(21):1-22.