Research Article
PDF EndNote BibTex RIS Cite

ON α -QUASI SHORT MODULES

Year 2017, Volume 21, Issue 21, 91 - 102, 17.01.2017
https://doi.org/10.24330/ieja.296105

Abstract


We introduce and study the concept of α-quasi short modules.

References

  • [1] T. Albu and S. T. Rizvi,Chain conditions on quotient finite dimensional modules
  • , Comm. Algebra, 29(5) (2001), 1909-1928.
  • [2] T. Albu and P. F. Smith,Dual Krull dimension and duality, Rocky Mountain
  • J. Math., 29(4) (1999), 1153-1165.
  • [3] T. Albu and P. Vamos,Global Krull dimension and global dual Krull dimension of valuation rings
  • , Abelian groups, module theory, and topology (Padua, 1997),
  • Lecture Notes in Pure and Appl. Math., 201, Dekker, New York, (1998), 37-54.
  • [4] G. Bilhan and P. F. Smith, Short modules and almost Noetherian modules,
  • Math. Scand., 98(1) (2006), 12-18.
  • [5] L. Chambless, N-Dimension and N-critical modules, application to Artinian
  • modules, Comm. Algebra, 8(16) (1980), 1561-1592.
  • [6] M. Davoudian, Dimension of non-finitely generated submodules, Vietnam J. Math., 44(4) (2016), 817-827.
  • [7] M. Davoudian and O. A. S. Karamzadeh, Artinian serial modules over com-
  • mutative (or, left Noetherian) rings are at most one step away from being
  • Noetherian, Comm. Algebra, 44(9) (2016), 3907-3917.
  • [8] M. Davoudian, O. A. S. Karamzadeh and N. Shirali, On α-short modules,
  • Math. Scand., 114(1) (2014), 26-37.
  • [9] R. Gordon, Gabriel and Krull dimension, Ring theory (Proc. Conf., Univ.
  • Oklahoma, Norman, Okla., 1973), 241-295, Lecture Notes in Pure and Appl. Math., 7, Dekker, New York, 1974.

Year 2017, Volume 21, Issue 21, 91 - 102, 17.01.2017
https://doi.org/10.24330/ieja.296105

Abstract

References

  • [1] T. Albu and S. T. Rizvi,Chain conditions on quotient finite dimensional modules
  • , Comm. Algebra, 29(5) (2001), 1909-1928.
  • [2] T. Albu and P. F. Smith,Dual Krull dimension and duality, Rocky Mountain
  • J. Math., 29(4) (1999), 1153-1165.
  • [3] T. Albu and P. Vamos,Global Krull dimension and global dual Krull dimension of valuation rings
  • , Abelian groups, module theory, and topology (Padua, 1997),
  • Lecture Notes in Pure and Appl. Math., 201, Dekker, New York, (1998), 37-54.
  • [4] G. Bilhan and P. F. Smith, Short modules and almost Noetherian modules,
  • Math. Scand., 98(1) (2006), 12-18.
  • [5] L. Chambless, N-Dimension and N-critical modules, application to Artinian
  • modules, Comm. Algebra, 8(16) (1980), 1561-1592.
  • [6] M. Davoudian, Dimension of non-finitely generated submodules, Vietnam J. Math., 44(4) (2016), 817-827.
  • [7] M. Davoudian and O. A. S. Karamzadeh, Artinian serial modules over com-
  • mutative (or, left Noetherian) rings are at most one step away from being
  • Noetherian, Comm. Algebra, 44(9) (2016), 3907-3917.
  • [8] M. Davoudian, O. A. S. Karamzadeh and N. Shirali, On α-short modules,
  • Math. Scand., 114(1) (2014), 26-37.
  • [9] R. Gordon, Gabriel and Krull dimension, Ring theory (Proc. Conf., Univ.
  • Oklahoma, Norman, Okla., 1973), 241-295, Lecture Notes in Pure and Appl. Math., 7, Dekker, New York, 1974.

Details

Subjects Mathematics
Journal Section Articles
Authors

Maryam Davoudian This is me

Publication Date January 17, 2017
Published in Issue Year 2017, Volume 21, Issue 21

Cite

Bibtex @research article { ieja296105, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2017}, volume = {21}, number = {21}, pages = {91 - 102}, doi = {10.24330/ieja.296105}, title = {ON α -QUASI SHORT MODULES}, key = {cite}, author = {Davoudian, Maryam} }
APA Davoudian, M. (2017). ON α -QUASI SHORT MODULES . International Electronic Journal of Algebra , 21 (21) , 91-102 . DOI: 10.24330/ieja.296105
MLA Davoudian, M. "ON α -QUASI SHORT MODULES" . International Electronic Journal of Algebra 21 (2017 ): 91-102 <https://dergipark.org.tr/en/pub/ieja/issue/27921/296105>
Chicago Davoudian, M. "ON α -QUASI SHORT MODULES". International Electronic Journal of Algebra 21 (2017 ): 91-102
RIS TY - JOUR T1 - ON α -QUASI SHORT MODULES AU - MaryamDavoudian Y1 - 2017 PY - 2017 N1 - doi: 10.24330/ieja.296105 DO - 10.24330/ieja.296105 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 91 EP - 102 VL - 21 IS - 21 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.296105 UR - https://doi.org/10.24330/ieja.296105 Y2 - 2016 ER -
EndNote %0 International Electronic Journal of Algebra ON α -QUASI SHORT MODULES %A Maryam Davoudian %T ON α -QUASI SHORT MODULES %D 2017 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 21 %N 21 %R doi: 10.24330/ieja.296105 %U 10.24330/ieja.296105
ISNAD Davoudian, Maryam . "ON α -QUASI SHORT MODULES". International Electronic Journal of Algebra 21 / 21 (January 2017): 91-102 . https://doi.org/10.24330/ieja.296105
AMA Davoudian M. ON α -QUASI SHORT MODULES. IEJA. 2017; 21(21): 91-102.
Vancouver Davoudian M. ON α -QUASI SHORT MODULES. International Electronic Journal of Algebra. 2017; 21(21): 91-102.
IEEE M. Davoudian , "ON α -QUASI SHORT MODULES", International Electronic Journal of Algebra, vol. 21, no. 21, pp. 91-102, Jan. 2017, doi:10.24330/ieja.296105

Cited By

Dimension of Non-small Submodules
Bulletin of the Iranian Mathematical Society
Maryam Davoudian
https://doi.org/10.1007/s41980-019-00229-z