Research Article
PDF EndNote BibTex RIS Cite

Year 2018, Volume 23, Issue 23, 153 - 156, 11.01.2018
https://doi.org/10.24330/ieja.373657

Abstract

References

  • N. Epstein and J. Shapiro, Perinormality-a generalization of Krull domains, J. Algebra, 451 (2016), 65-84.
  • N. Epstein and J. Shapiro, Perinormality in pullbacks, to appear in J. Commut. Algebra, https://projecteuclid.org/euclid.jca/1491379230, arXiv:1511.06473v2 [math.AC].
  • M. D. Fried and M. Jarden, Field Arithmetic, Results in Mathematics and Related Areas (3), 11, Springer-Verlag, Berlin, 1986.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.

Perinormal polynomial domains

Year 2018, Volume 23, Issue 23, 153 - 156, 11.01.2018
https://doi.org/10.24330/ieja.373657

Abstract

Let A be a domain. We relate the perinormality (as de ned by
Epstein and Shapiro) of A and A[X] for a narrow class of Noetherian domains.

References

  • N. Epstein and J. Shapiro, Perinormality-a generalization of Krull domains, J. Algebra, 451 (2016), 65-84.
  • N. Epstein and J. Shapiro, Perinormality in pullbacks, to appear in J. Commut. Algebra, https://projecteuclid.org/euclid.jca/1491379230, arXiv:1511.06473v2 [math.AC].
  • M. D. Fried and M. Jarden, Field Arithmetic, Results in Mathematics and Related Areas (3), 11, Springer-Verlag, Berlin, 1986.
  • R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, 12, Marcel Dekker, Inc., New York, 1972.

Details

Journal Section Articles
Authors

Tiberiu DUMİTRESCU This is me


Anam RANİ This is me

Publication Date January 11, 2018
Published in Issue Year 2018, Volume 23, Issue 23

Cite

Bibtex @research article { ieja373657, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {1710 Sokak, No:41, Batikent/Ankara}, publisher = {Abdullah HARMANCI}, year = {2018}, volume = {23}, number = {23}, pages = {153 - 156}, doi = {10.24330/ieja.373657}, title = {Perinormal polynomial domains}, key = {cite}, author = {Dumitrescu, Tiberiu and Rani, Anam} }
APA Dumitrescu, T. & Rani, A. (2018). Perinormal polynomial domains . International Electronic Journal of Algebra , 23 (23) , 153-156 . DOI: 10.24330/ieja.373657
MLA Dumitrescu, T. , Rani, A. "Perinormal polynomial domains" . International Electronic Journal of Algebra 23 (2018 ): 153-156 <https://dergipark.org.tr/en/pub/ieja/issue/33727/373657>
Chicago Dumitrescu, T. , Rani, A. "Perinormal polynomial domains". International Electronic Journal of Algebra 23 (2018 ): 153-156
RIS TY - JOUR T1 - Perinormal polynomial domains AU - TiberiuDumitrescu, AnamRani Y1 - 2018 PY - 2018 N1 - doi: 10.24330/ieja.373657 DO - 10.24330/ieja.373657 T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 153 EP - 156 VL - 23 IS - 23 SN - 1306-6048-1306-6048 M3 - doi: 10.24330/ieja.373657 UR - https://doi.org/10.24330/ieja.373657 Y2 - 2022 ER -
EndNote %0 International Electronic Journal of Algebra Perinormal polynomial domains %A Tiberiu Dumitrescu , Anam Rani %T Perinormal polynomial domains %D 2018 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 23 %N 23 %R doi: 10.24330/ieja.373657 %U 10.24330/ieja.373657
ISNAD Dumitrescu, Tiberiu , Rani, Anam . "Perinormal polynomial domains". International Electronic Journal of Algebra 23 / 23 (January 2018): 153-156 . https://doi.org/10.24330/ieja.373657
AMA Dumitrescu T. , Rani A. Perinormal polynomial domains. IEJA. 2018; 23(23): 153-156.
Vancouver Dumitrescu T. , Rani A. Perinormal polynomial domains. International Electronic Journal of Algebra. 2018; 23(23): 153-156.
IEEE T. Dumitrescu and A. Rani , "Perinormal polynomial domains", International Electronic Journal of Algebra, vol. 23, no. 23, pp. 153-156, Jan. 2018, doi:10.24330/ieja.373657