Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator
theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, (1998), 1-12.
D. W. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39(7)
(2011), 2463-2472.
D. W. Barnes, Schunck classes of soluble Leibniz algebras, Comm. Algebra,
41(11) (2013), 4046-4065.
C. Batten, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg and E. Stitzinger,
A Frattini Theory for Leibniz algebras, Comm. Algebra, 41(4) (2013), 1547-
1557.
C. Batten Ray, A. Combs, N. Gin, A. Hedges, J. T. Hird and L. Zack, Nilpotent
Lie and Leibniz algebras, Comm. Algebra, 42(6) (2014), 2404-2410.
C. Batten Ray, A. Hedges and E. Stitzinger, Classifying several classes of
Leibniz algebras, Algebr. Represent. Theory, 17(2) (2014), 703-712.
J. C. Beidleman and T. K. Seo, Generalized Frattini subgroups of nite groups,
Pacic J. Math., 23 (1967), 441-450.
L. Bosko, A. Hedges, J. T. Hird, N. Schwartz and K. Stagg, Jacobson's rene-
ment of Engel's theorem for Leibniz algebras, Involve, 4(3) (2011), 293-296.
T. Burch, M. Harris, A. McAlister, E. Rogers, E. Stitzinger and S. M. Sullivan,
2-recognizeable classes of Leibniz algebras, J. Algebra, 423 (2015), 506-513.
I. Demir, K. Misra and E. Stitzinger, On some structures of Leibniz algebras,
Recent advances in representation theory, quantum groups, algebraic geometry,
and related topics, Amer. Math. Soc., Providence, RI, Contemp. Math., 623
(2014), 41-54.
L.-C. Kappe and J. Kirkland, Some analogues of the Frattini subgroup, Algebra
Colloq., 4(4) (1997), 419-426.
J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de
Leibniz, Enseign. Math., 39 (1993), 269-293.
K. Stagg, Analogues of the Frattini subalgebra, Int. Electron. J. Algebra, 9
(2011), 124-132.
D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc., 27
(1973), 440-462.
D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch.
Math. (Basel), 35(1-2) (1980), 112-120.
Year 2019,
Volume: 25 Issue: 25, 64 - 76, 08.01.2019
Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator
theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, (1998), 1-12.
D. W. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39(7)
(2011), 2463-2472.
D. W. Barnes, Schunck classes of soluble Leibniz algebras, Comm. Algebra,
41(11) (2013), 4046-4065.
C. Batten, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg and E. Stitzinger,
A Frattini Theory for Leibniz algebras, Comm. Algebra, 41(4) (2013), 1547-
1557.
C. Batten Ray, A. Combs, N. Gin, A. Hedges, J. T. Hird and L. Zack, Nilpotent
Lie and Leibniz algebras, Comm. Algebra, 42(6) (2014), 2404-2410.
C. Batten Ray, A. Hedges and E. Stitzinger, Classifying several classes of
Leibniz algebras, Algebr. Represent. Theory, 17(2) (2014), 703-712.
J. C. Beidleman and T. K. Seo, Generalized Frattini subgroups of nite groups,
Pacic J. Math., 23 (1967), 441-450.
L. Bosko, A. Hedges, J. T. Hird, N. Schwartz and K. Stagg, Jacobson's rene-
ment of Engel's theorem for Leibniz algebras, Involve, 4(3) (2011), 293-296.
T. Burch, M. Harris, A. McAlister, E. Rogers, E. Stitzinger and S. M. Sullivan,
2-recognizeable classes of Leibniz algebras, J. Algebra, 423 (2015), 506-513.
I. Demir, K. Misra and E. Stitzinger, On some structures of Leibniz algebras,
Recent advances in representation theory, quantum groups, algebraic geometry,
and related topics, Amer. Math. Soc., Providence, RI, Contemp. Math., 623
(2014), 41-54.
L.-C. Kappe and J. Kirkland, Some analogues of the Frattini subgroup, Algebra
Colloq., 4(4) (1997), 419-426.
J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de
Leibniz, Enseign. Math., 39 (1993), 269-293.
K. Stagg, Analogues of the Frattini subalgebra, Int. Electron. J. Algebra, 9
(2011), 124-132.
D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc., 27
(1973), 440-462.
D. Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch.
Math. (Basel), 35(1-2) (1980), 112-120.
Mcalister, A., Rovira, K. S., & Stitzinger, E. (2019). FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra, 25(25), 64-76. https://doi.org/10.24330/ieja.504114
AMA
Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. January 2019;25(25):64-76. doi:10.24330/ieja.504114
Chicago
Mcalister, Allison, Kristen Stagg Rovira, and Ernie Stitzinger. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 25, no. 25 (January 2019): 64-76. https://doi.org/10.24330/ieja.504114.
EndNote
Mcalister A, Rovira KS, Stitzinger E (January 1, 2019) FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. International Electronic Journal of Algebra 25 25 64–76.
IEEE
A. Mcalister, K. S. Rovira, and E. Stitzinger, “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”, IEJA, vol. 25, no. 25, pp. 64–76, 2019, doi: 10.24330/ieja.504114.
ISNAD
Mcalister, Allison et al. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra 25/25 (January 2019), 64-76. https://doi.org/10.24330/ieja.504114.
JAMA
Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. 2019;25:64–76.
MLA
Mcalister, Allison et al. “FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS”. International Electronic Journal of Algebra, vol. 25, no. 25, 2019, pp. 64-76, doi:10.24330/ieja.504114.
Vancouver
Mcalister A, Rovira KS, Stitzinger E. FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS. IEJA. 2019;25(25):64-76.