Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x)|o(y) or o(y)|o(x). In an earlier paper, the main properties of this graph was obtained. The aim of this paper is to investigate the Hamiltonianity, Eulerianness and 2-connectedness of this graph.
M. Habib and C. Paul, A survey of the algorithmic aspects of modular decom-
position, Comput. Sci. Rev., 4 (2010), 41-59.
A. Hamzeh, Spectrum and L-spectrum of the cyclic graph, Southeast Asian
Bull. Math., 42 (2018), 875-884.
A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the
power graph of a finite group, European J. Combin., 60 (2017), 82-88.
A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph
and its main supergraph for certain finite groups, Filomat, 31(16) (2017), 5323-
5334.
A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a
finite group, Turkish J. Math., 42 (2018), 1978-1989.
W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition,
Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-
Interscience, New York, 2000.
A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of
groups, Contributions to General Algebra, 12 (Vienna, 1999), Heyn, Klagen-
furt, (2000), 229-235.
A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties
of semigroups, J. Algebra, 251(1) (2002), 16-26.
A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of
semigroups, Comment. Math. Univ. Carolin., 45(1) (2004), 1-7.
A. V. Kelarev, S. J. Quinn and R. Smolikova, Power graphs and semigroups
of matrices, Bull. Austral. Math. Soc., 63(2) (2001), 341-344.
A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A
characterization of symmetric group Sr, where r is prime number, Ann. Math.
Inform., 40 (2012), 13-23.
A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A
characterization of sporadic simple groups by nse and order, J. Algebra Appl.,
12 (2013), 1250158 (3 pp).
J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cam-
bridge, New York-Melbourne, 1978.
G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), 385-401.
C. Shao and Q. Jiang, A new characterization of Mathieu groups, Arch. Math.
(Brno), 46 (2010), 13-23.
M. Tarnauceanu, A generalization of the Euler's totient function, Asian-Eur.
J. Math., 8(4) (2015), 1550087 (13 pp).
A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of
finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385-409.
D. B.West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc.,
Upper Saddle River, NJ, 2001.
J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981),
487-513.
Year 2019,
Volume: 26 Issue: 26, 1 - 12, 11.07.2019
M. Habib and C. Paul, A survey of the algorithmic aspects of modular decom-
position, Comput. Sci. Rev., 4 (2010), 41-59.
A. Hamzeh, Spectrum and L-spectrum of the cyclic graph, Southeast Asian
Bull. Math., 42 (2018), 875-884.
A. Hamzeh and A. R. Ashrafi, Automorphism groups of supergraphs of the
power graph of a finite group, European J. Combin., 60 (2017), 82-88.
A. Hamzeh and A. R. Ashrafi, Spectrum and L-spectrum of the power graph
and its main supergraph for certain finite groups, Filomat, 31(16) (2017), 5323-
5334.
A. Hamzeh and A. R. Ashrafi, The order supergraph of the power graph of a
finite group, Turkish J. Math., 42 (2018), 1978-1989.
W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition,
Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-
Interscience, New York, 2000.
A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of
groups, Contributions to General Algebra, 12 (Vienna, 1999), Heyn, Klagen-
furt, (2000), 229-235.
A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties
of semigroups, J. Algebra, 251(1) (2002), 16-26.
A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of
semigroups, Comment. Math. Univ. Carolin., 45(1) (2004), 1-7.
A. V. Kelarev, S. J. Quinn and R. Smolikova, Power graphs and semigroups
of matrices, Bull. Austral. Math. Soc., 63(2) (2001), 341-344.
A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A
characterization of symmetric group Sr, where r is prime number, Ann. Math.
Inform., 40 (2012), 13-23.
A. R. Khalili Asboei, S. S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A
characterization of sporadic simple groups by nse and order, J. Algebra Appl.,
12 (2013), 1250158 (3 pp).
J. S. Rose, A Course on Group Theory, Cambridge University Prees, Cam-
bridge, New York-Melbourne, 1978.
G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), 385-401.
C. Shao and Q. Jiang, A new characterization of Mathieu groups, Arch. Math.
(Brno), 46 (2010), 13-23.
M. Tarnauceanu, A generalization of the Euler's totient function, Asian-Eur.
J. Math., 8(4) (2015), 1550087 (13 pp).
A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of
finite simple groups by spectrum and order, Algebra Logic, 48 (2009), 385-409.
D. B.West, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc.,
Upper Saddle River, NJ, 2001.
J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (1981),
487-513.
Hamzeh, A., & Ashrafi, A. R. (2019). SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. International Electronic Journal of Algebra, 26(26), 1-12. https://doi.org/10.24330/ieja.586838
AMA
Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. July 2019;26(26):1-12. doi:10.24330/ieja.586838
Chicago
Hamzeh, A., and A. R. Ashrafi. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 1-12. https://doi.org/10.24330/ieja.586838.
EndNote
Hamzeh A, Ashrafi AR (July 1, 2019) SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. International Electronic Journal of Algebra 26 26 1–12.
IEEE
A. Hamzeh and A. R. Ashrafi, “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”, IEJA, vol. 26, no. 26, pp. 1–12, 2019, doi: 10.24330/ieja.586838.
ISNAD
Hamzeh, A. - Ashrafi, A. R. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra 26/26 (July 2019), 1-12. https://doi.org/10.24330/ieja.586838.
JAMA
Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. 2019;26:1–12.
MLA
Hamzeh, A. and A. R. Ashrafi. “SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 1-12, doi:10.24330/ieja.586838.
Vancouver
Hamzeh A, Ashrafi AR. SOME REMARKS ON THE ORDER SUPERGRAPH OF THE POWER GRAPH OF A FINITE GROUP. IEJA. 2019;26(26):1-12.