Research Article
BibTex RIS Cite

A NOTE ON AUTOMORPHISM LIFTABLE MODULES

Year 2019, Volume: 26 Issue: 26, 111 - 121, 11.07.2019
https://doi.org/10.24330/ieja.587002

Abstract

A module M is said to be an automorphism liftable module if
for each submodule N of M, every automorphism of the quotient M=N can
be lifted to an endomorphism of M. In this work, some properties of auto-
morphism liftable modules are investigated. Also, characterization for some
special rings such as perfect, semiperfect and uniserial are given by using au-
tomorphism liftable modules.

References

  • A. N. Abyzov, T. C. Quynh and D. D. Tai, Dual automorphism-invariant modules over perfect rings, Sib. Math. J., 58(5) (2017), 743-751.
  • A. N. Abyzov and C. Q. Truong, Lifting of automorphisms of factor modules, Comm. Algebra, 46(11) (2018), 5073-5082.
  • K. A. Byrd, Some characterizations of uniserial rings, Math. Ann., 186 (1970), 163-170.
  • L. Fuchs and K. M. Rangaswamy, Quasi-projective abelian groups, Bull. Soc. Math. France, 98 (1970), 5-8.
  • J. S. Golan, Characterization of rings using quasiprojective modules, Israel J. Math., 8 (1970), 34-38.
  • J. S. Golan, Characterization of rings using quasiprojective modules II, Proc. Amer. Math. Soc., 28(2) (1971), 337-343.
  • S. M. Kaye, Ring theoretic properties of matrix rings, Canad. Math. Bull., 10 (1967), 365-374.
  • M. T. Kosan, N. T. T. Ha and T. C. Quynh, Rings for which every cyclic module is dual automorphism-invariant, J. Algebra Appl., 15(5) (2016), 1650078 (11 pp).
  • T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12(2) (2013), 1250159 (9 pp).
  • X. H. Nguyen, M. F. Yousif and Y. Zhou, Rings whose cyclics are D3-modules, J. Algebra Appl., 16(10) (2017), 1750184 (15 pp).
  • C. Selvaraj and S. Santhakumar, A note on dual automorphism invariant modules, J. Algebra Appl., 16(2) (2017), 1750024 (11 pp).
  • C. Selvaraj and S. Santhakumar, Automorphism liftable modules, Comment. Math. Univ. Carolin., 59(1) (2018), 35-44.
  • S. Singh and A. K. Srivastava, Dual automorphism-invariant modules, J. Algebra, 371 (2012), 262-275.
  • A. A. Tuganbaev, Automorphisms of submodules and their extensions, Discrete Math. Appl., 23(1) (2013), 115-124.
  • L. E. T. Wu and J. P. Jans, On quasi projectives, Illinois. J. Math., 11 (1967), 439-448.
Year 2019, Volume: 26 Issue: 26, 111 - 121, 11.07.2019
https://doi.org/10.24330/ieja.587002

Abstract

References

  • A. N. Abyzov, T. C. Quynh and D. D. Tai, Dual automorphism-invariant modules over perfect rings, Sib. Math. J., 58(5) (2017), 743-751.
  • A. N. Abyzov and C. Q. Truong, Lifting of automorphisms of factor modules, Comm. Algebra, 46(11) (2018), 5073-5082.
  • K. A. Byrd, Some characterizations of uniserial rings, Math. Ann., 186 (1970), 163-170.
  • L. Fuchs and K. M. Rangaswamy, Quasi-projective abelian groups, Bull. Soc. Math. France, 98 (1970), 5-8.
  • J. S. Golan, Characterization of rings using quasiprojective modules, Israel J. Math., 8 (1970), 34-38.
  • J. S. Golan, Characterization of rings using quasiprojective modules II, Proc. Amer. Math. Soc., 28(2) (1971), 337-343.
  • S. M. Kaye, Ring theoretic properties of matrix rings, Canad. Math. Bull., 10 (1967), 365-374.
  • M. T. Kosan, N. T. T. Ha and T. C. Quynh, Rings for which every cyclic module is dual automorphism-invariant, J. Algebra Appl., 15(5) (2016), 1650078 (11 pp).
  • T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12(2) (2013), 1250159 (9 pp).
  • X. H. Nguyen, M. F. Yousif and Y. Zhou, Rings whose cyclics are D3-modules, J. Algebra Appl., 16(10) (2017), 1750184 (15 pp).
  • C. Selvaraj and S. Santhakumar, A note on dual automorphism invariant modules, J. Algebra Appl., 16(2) (2017), 1750024 (11 pp).
  • C. Selvaraj and S. Santhakumar, Automorphism liftable modules, Comment. Math. Univ. Carolin., 59(1) (2018), 35-44.
  • S. Singh and A. K. Srivastava, Dual automorphism-invariant modules, J. Algebra, 371 (2012), 262-275.
  • A. A. Tuganbaev, Automorphisms of submodules and their extensions, Discrete Math. Appl., 23(1) (2013), 115-124.
  • L. E. T. Wu and J. P. Jans, On quasi projectives, Illinois. J. Math., 11 (1967), 439-448.
There are 15 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

S. Santhakumar This is me

Publication Date July 11, 2019
Published in Issue Year 2019 Volume: 26 Issue: 26

Cite

APA Santhakumar, S. (2019). A NOTE ON AUTOMORPHISM LIFTABLE MODULES. International Electronic Journal of Algebra, 26(26), 111-121. https://doi.org/10.24330/ieja.587002
AMA Santhakumar S. A NOTE ON AUTOMORPHISM LIFTABLE MODULES. IEJA. July 2019;26(26):111-121. doi:10.24330/ieja.587002
Chicago Santhakumar, S. “A NOTE ON AUTOMORPHISM LIFTABLE MODULES”. International Electronic Journal of Algebra 26, no. 26 (July 2019): 111-21. https://doi.org/10.24330/ieja.587002.
EndNote Santhakumar S (July 1, 2019) A NOTE ON AUTOMORPHISM LIFTABLE MODULES. International Electronic Journal of Algebra 26 26 111–121.
IEEE S. Santhakumar, “A NOTE ON AUTOMORPHISM LIFTABLE MODULES”, IEJA, vol. 26, no. 26, pp. 111–121, 2019, doi: 10.24330/ieja.587002.
ISNAD Santhakumar, S. “A NOTE ON AUTOMORPHISM LIFTABLE MODULES”. International Electronic Journal of Algebra 26/26 (July 2019), 111-121. https://doi.org/10.24330/ieja.587002.
JAMA Santhakumar S. A NOTE ON AUTOMORPHISM LIFTABLE MODULES. IEJA. 2019;26:111–121.
MLA Santhakumar, S. “A NOTE ON AUTOMORPHISM LIFTABLE MODULES”. International Electronic Journal of Algebra, vol. 26, no. 26, 2019, pp. 111-2, doi:10.24330/ieja.587002.
Vancouver Santhakumar S. A NOTE ON AUTOMORPHISM LIFTABLE MODULES. IEJA. 2019;26(26):111-2.