Research Article
BibTex RIS Cite

ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS

Year 2021, Volume: 30 Issue: 30, 217 - 230, 17.07.2021
https://doi.org/10.24330/ieja.969907

Abstract

A ring $R$ is called left comorphic if for every $a\in R$ there exists $b\in
R$ such that the left and right annihilators satisfy $Ra=l(b)$ and
$r(a)=bR$. In this paper, the Abelian groups with left comorphic
endomorphism rings are completely determined.

References

  • M. Alkan, W. K. Nicholson, and A. C . Ozcan, Comorphic rings, J. Algebra Appl., 17(4) (2018), 1850075 (21 pp).
  • G. Calugareanu, Morphic abelian groups, J. Algebra Appl., 9(2) (2010), 185-193.
  • G. Calugareanu, Abelian groups with left morphic endomorphism ring, J. Algebra Appl., 17(9) (2018), 1850176 (8 pp).
  • G. Calugareanu and L. Pop, Morphic objects in categories, Bull. Math. Soc. Sci. Math. Roumanie, 56(104)(2) (2013), 173-180.
  • A. R. Chekhlov, Abelian groups with annihilator ideals of endomorphism rings, Sib. Math. J., 59(2) (2018), 363-367.
  • S. Dascalescu, C. Nastasescu, A. Tudorache and L. Daus, Relative regular objects in categories, Appl. Categ. Structures, 14(5-6) (2006), 567-577.
  • L. Fuchs, Infinite Abelian Groups. Vol. I., Academic Press, New York-London, 1970.
  • L. Fuchs, Infinite Abelian Groups. Vol. II., Academic Press, New York-London, 1973.
  • S. Glaz and W. Wickless, Regular and principal projective endomorphism rings of mixed abelian groups, Comm. Algebra, 22(4) (1994), 1161-1176.
  • A.V. Ivanov, Abelian groups with self-injective endomorphism rings and endomorphism rings with annihilator condition, In: Abelian Groups and Modules [Russian], Tomsk. Gos. Univ., Tomsk, (1982), 93-109.
  • M.A. Kil'p, Quasi-injective abelian groups [Russian], Vestnik Moskov. Univ. Ser. I Mat. Meh., 22(3) (1967), 3-4.
  • G. Lee, S. T. Rizvi and C. S. Roman, Rickart modules, Comm. Algebra, 38(11) (2010), 4005-4027.
  • W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(1) (2004), 391-406.
  • W. K. Nicholson, A survey of morphic modules and rings, Advances in Ring Theory (Nanjing 2004), World Sci. Publ., Hackensack, NJ, (2005), 167-180.
  • W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
  • [16] K. M. Rangaswamy, Abelian groups with self-injective endomorphism rings, Lect. Notes. Math., 372 (1974), 595-604.
  • S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32(1) (2004), 103-123.
  • J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163 (1972), 341-355.
  • H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra, 35(9) (2007), 2820-2837.
Year 2021, Volume: 30 Issue: 30, 217 - 230, 17.07.2021
https://doi.org/10.24330/ieja.969907

Abstract

References

  • M. Alkan, W. K. Nicholson, and A. C . Ozcan, Comorphic rings, J. Algebra Appl., 17(4) (2018), 1850075 (21 pp).
  • G. Calugareanu, Morphic abelian groups, J. Algebra Appl., 9(2) (2010), 185-193.
  • G. Calugareanu, Abelian groups with left morphic endomorphism ring, J. Algebra Appl., 17(9) (2018), 1850176 (8 pp).
  • G. Calugareanu and L. Pop, Morphic objects in categories, Bull. Math. Soc. Sci. Math. Roumanie, 56(104)(2) (2013), 173-180.
  • A. R. Chekhlov, Abelian groups with annihilator ideals of endomorphism rings, Sib. Math. J., 59(2) (2018), 363-367.
  • S. Dascalescu, C. Nastasescu, A. Tudorache and L. Daus, Relative regular objects in categories, Appl. Categ. Structures, 14(5-6) (2006), 567-577.
  • L. Fuchs, Infinite Abelian Groups. Vol. I., Academic Press, New York-London, 1970.
  • L. Fuchs, Infinite Abelian Groups. Vol. II., Academic Press, New York-London, 1973.
  • S. Glaz and W. Wickless, Regular and principal projective endomorphism rings of mixed abelian groups, Comm. Algebra, 22(4) (1994), 1161-1176.
  • A.V. Ivanov, Abelian groups with self-injective endomorphism rings and endomorphism rings with annihilator condition, In: Abelian Groups and Modules [Russian], Tomsk. Gos. Univ., Tomsk, (1982), 93-109.
  • M.A. Kil'p, Quasi-injective abelian groups [Russian], Vestnik Moskov. Univ. Ser. I Mat. Meh., 22(3) (1967), 3-4.
  • G. Lee, S. T. Rizvi and C. S. Roman, Rickart modules, Comm. Algebra, 38(11) (2010), 4005-4027.
  • W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(1) (2004), 391-406.
  • W. K. Nicholson, A survey of morphic modules and rings, Advances in Ring Theory (Nanjing 2004), World Sci. Publ., Hackensack, NJ, (2005), 167-180.
  • W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174 (1995), 77-93.
  • [16] K. M. Rangaswamy, Abelian groups with self-injective endomorphism rings, Lect. Notes. Math., 372 (1974), 595-604.
  • S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32(1) (2004), 103-123.
  • J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163 (1972), 341-355.
  • H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra, 35(9) (2007), 2820-2837.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Grigore Calugareanu This is me

Andrey Chekhlov This is me

Publication Date July 17, 2021
Published in Issue Year 2021 Volume: 30 Issue: 30

Cite

APA Calugareanu, G., & Chekhlov, A. (2021). ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS. International Electronic Journal of Algebra, 30(30), 217-230. https://doi.org/10.24330/ieja.969907
AMA Calugareanu G, Chekhlov A. ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS. IEJA. July 2021;30(30):217-230. doi:10.24330/ieja.969907
Chicago Calugareanu, Grigore, and Andrey Chekhlov. “ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS”. International Electronic Journal of Algebra 30, no. 30 (July 2021): 217-30. https://doi.org/10.24330/ieja.969907.
EndNote Calugareanu G, Chekhlov A (July 1, 2021) ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS. International Electronic Journal of Algebra 30 30 217–230.
IEEE G. Calugareanu and A. Chekhlov, “ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS”, IEJA, vol. 30, no. 30, pp. 217–230, 2021, doi: 10.24330/ieja.969907.
ISNAD Calugareanu, Grigore - Chekhlov, Andrey. “ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS”. International Electronic Journal of Algebra 30/30 (July 2021), 217-230. https://doi.org/10.24330/ieja.969907.
JAMA Calugareanu G, Chekhlov A. ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS. IEJA. 2021;30:217–230.
MLA Calugareanu, Grigore and Andrey Chekhlov. “ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS”. International Electronic Journal of Algebra, vol. 30, no. 30, 2021, pp. 217-30, doi:10.24330/ieja.969907.
Vancouver Calugareanu G, Chekhlov A. ABELIAN GROUPS WITH LEFT COMORPHIC ENDOMORPHISM RINGS. IEJA. 2021;30(30):217-30.